17 Ağustos 2010 Salı

Fotosentez

YEŞİL MUCİZE
FOTOSENTEZ




HARUN YAHYA










ISBN


VURAL YAYINCILIK


Çatalçeşme Sok. Üretmen Han
No: 27/13 Cağaloğlu-İstanbul
Tel: (0 212) 511 42 30



Baskı: SEÇİL OFSET
100. Yıl Mahallesi MAS-SİT Matbaacılar Sitesi
4. Cadde No: 77 Bağcılar-İstanbul Tel: (0 212) 629 06 15






İÇİNDEKİLER


Giriş
Bizim İçin Çalışan Yeşil Fabrika
Yapraktaki Tasarım ve Yaprak Çeşitleri
Yaprağın İçinde Neler Oluyor?
Sonbahar Renkleri
Fotosentez
Fotosentez Mekanizması
Yeşil Mucize: Klorofil
Fotosentez: Evrimin Tesadüf Mantığını Geçersiz Kılan İşlem
Sonuç: Bitkiyi Kim Yönetiyor?
Evrim Yanılgısı


OKUYUCUYA


Bu kitapta ve diğer çalışmalarımızda evrim teorisinin çöküşüne özel bir yer ayrılmasının nedeni, bu teorinin her türlü din aleyhtarı felsefenin temelini oluşturmasıdır. Yaratılışı ve dolayısıyla Allah'ın varlığını inkar eden Darwinizm, 140 yıldır pek çok insanın imanını kaybetmesine ya da kuşkuya düşmesine neden olmuştur. Dolayısıyla bu teorinin bir aldatmaca olduğunu gözler önüne sermek çok önemli bir imani görevdir. Bu önemli hizmetin tüm insanlarımıza ulaştırılabilmesi ise zorunludur. Kimi okuyucularımız belki tek bir kitabımızı okuma imkanı bulabilir. Bu nedenle her kitabımızda bu konuya özet de olsa bir bölüm ayrılması uygun görülmüştür.
Belirtilmesi gereken bir diğer husus, bu kitapların içeriği ile ilgilidir. Yazarın tüm kitaplarında imani konular, Kuran ayetleri doğrultusunda anlatılmakta, insanlar Allah'ın ayetlerini öğrenmeye ve yaşamaya davet edilmektedir. Allah'ın ayetleri ile ilgili tüm konular, okuyanın aklında hiçbir şüphe veya soru işareti bırakmayacak şekilde açıklanmaktadır.
Bu anlatım sırasında kullanılan samimi, sade ve akıcı üslup ise kitapların yediden yetmişe herkes tarafından rahatça anlaşılmasını sağlamaktadır. Bu etkili ve yalın anlatım sayesinde, kitaplar "bir solukta okunan kitaplar" deyimine tam olarak uymaktadır. Dini reddetme konusunda kesin bir tavır sergileyen insanlar dahi, bu kitaplarda anlatılan gerçeklerden etkilenmekte ve anlatılanların doğruluğunu inkar edememektedirler.
Bu kitap ve yazarın diğer eserleri, okuyucular tarafından bizzat okunabileceği gibi, karşılıklı bir sohbet ortamı şeklinde de okunabilir. Bu kitaplardan istifade etmek isteyen bir grup okuyucunun kitapları birarada okumaları, konuyla ilgili kendi tefekkür ve tecrübelerini de birbirlerine aktarmaları açısından yararlı olacaktır.
Bunun yanında, sadece Allah rızası için yazılmış olan bu kitapların tanınmasına ve okunmasına katkıda bulunmak da büyük bir hizmet olacaktır. Çünkü yazarın tüm kitaplarında ispat ve ikna edici yön son derece güçlüdür. Bu sebeple dini anlatmak isteyenler için en etkili yöntem, bu kitapların diğer insanlar tarafından da okunmasının teşvik edilmesidir.
Kitapların arkasına yazarın diğer eserlerinin tanıtımlarının eklenmesinin ise önemli sebepleri vardır. Bu sayede kitabı eline alan kişi, yukarıda söz ettiğimiz özellikleri taşıyan ve okumaktan hoşlandığını umduğumuz bu kitapla aynı vasıflara sahip daha birçok eser olduğunu görecektir. İmani ve siyasi konularda yararlanabileceği zengin bir kaynak birikiminin bulunduğuna şahit olacaktır.
Bu eserlerde, diğer bazı eserlerde görülen, yazarın şahsi kanaatlerine, şüpheli kaynaklara dayalı izahlara, mukaddesata karşı gereken adaba ve saygıya dikkat edilmeyen üsluplara, burkuntu veren ümitsiz, şüpheci ve ye'se sürükleyen anlatımlara rastlayamazsınız.


YAZAR ve ESERLERİ HAKKINDA


Harun Yahya müstear ismini kullanan yazar, 1956 yılında Ankara'da doğdu. İlk, orta ve lise öğrenimini Ankara'da tamamladı. Daha sonra İstanbul Mimar Sinan Üniversitesi Güzel Sanatlar Fakültesi'nde ve İstanbul Üniversitesi Felsefe Bölümü'nde öğrenim gördü. 1980'li yıllardan bu yana, imani, bilimsel ve siyasi konularda pek çok eser hazırladı. Bunların yanısıra, yazarın evrimcilerin sahtekarlıklarını, iddialarının geçersizliğini ve Darwinizm'in kanlı ideolojilerle olan karanlık bağlantılarını ortaya koyan çok önemli eserleri bulunmaktadır.
Yazarın müstear ismi, inkarcı düşünceye karşı mücadele eden iki Peygamberin hatıralarına hürmeten, isimlerini yad etmek için Harun ve Yahya isimlerinden oluşturulmuştur. Yazar tarafından kitapların kapağında Resulullah'ın mührünün kullanılmış olmasının sembolik anlamı ise, kitapların içeriği ile ilgilidir. Bu mühür, Kuran-ı Kerim'in Allah'ın son kitabı ve son sözü, Peygamberimizin de hatem-ül enbiya olmasını remzetmektedir. Yazar da, yayınladığı tüm çalışmalarında, Kuran'ı ve Resulullah'ın sünnetini kendine rehber edinmiştir. Bu suretle, inkarcı düşünce sistemlerinin tüm temel iddialarını tek tek çürütmeyi ve dine karşı yöneltilen itirazları tam olarak susturacak "son söz"ü söylemeyi hedeflemektedir. Çok büyük bir hikmet ve kemal sahibi olan Resulullah'ın mührü, bu son sözü söyleme niyetinin bir duası olarak kullanılmıştır.
Yazarın tüm çalışmalarındaki ortak hedef, Kuran'ın tebliğini tüm dünyaya ulaştırmak, böylelikle insanları Allah'ın varlığı, birliği ve ahiret gibi temel imani konular üzerinde düşünmeye sevk etmek ve inkarcı sistemlerin çürük temellerini ve sapkın uygulamalarını gözler önüne sermektir.
Nitekim Harun Yahya'nın eserleri Hindistan'dan Amerika'ya, İngiltere'den Endonezya'ya, Polonya'dan Bosna Hersek'e, İspanya'dan Brezilya'ya kadar dünyanın pek çok ülkesinde beğeniyle okunmaktadır. İngilizce, Fransızca, Almanca, İtalyanca, İspanyolca, Portekizce, Urduca, Arapça, Arnavutça, Rusça, Boşnakça, Uygurca, Endonezyaca gibi pek çok dile çevrilen eserler, yurt dışında geniş bir okuyucu kitlesi tarafından takip edilmektedir.
Dünyanın dört bir yanında olağanüstü takdir toplayan bu eserler pek çok insanın iman etmesine, pek çoğunun da imanında derinleşmesine vesile olmaktadır. Kitapları okuyan, inceleyen her kişi, bu eserlerdeki hikmetli, özlü, kolay anlaşılır ve samimi üslübun, akılcı ve ilmi yaklaşımın farkına varmaktadır. Bu eserler süratli etki etme, kesin netice verme, itiraz edilemezlik, çürütülemezlik özellikleri taşımaktadır. Bu eserleri okuyan ve üzerinde ciddi biçimde düşünen insanların, artık materyalist felsefeyi, ateizmi ve diğer sapkın görüş ve felsefelerin hiçbirini samimi olarak savunabilmeleri mümkün değildir. Bundan sonra savunsalar da ancak duygusal bir inatla savunacaklardır, çünkü fikri dayanakları çürütülmüştür. Çağımızdaki tüm inkarcı akımlar, Harun Yahya külliyatında fikren mağlup olmuşlardır.
Kuşkusuz bu özellikler, Kuran'ın hikmet ve anlatım çarpıcılığından kaynaklanmaktadır. Yazarın kendisi bu eserlerden dolayı bir övünme içinde değildir, yalnızca Allah'ın hidayetine vesile olmaya niyet etmiştir. Ayrıca yazarın bu kitaplardan elde ettiği hiçbir maddi kazancı da yoktur. Ne yazar ne de kitaplarının yayınlanmasına, tanıtım ve dağıtımına vesile olanlar, bundan maddi bir kazanç elde etmemekte, sadece Allah'ın rızasını kazanmak için hizmet etmektedirler.
Bu gerçekler göz önünde bulundurulduğunda, insanların görmediklerini görmelerini sağlayan, hidayetlerine vesile olan bu eserlerin okunmasını teşvik etmenin de, çok önemli bir hizmet olduğu ortaya çıkmaktadır.
Bu değerli eserleri tanıtmak yerine, insanların zihinlerini bulandıran, fikri karmaşa meydana getiren, kuşku ve tereddütleri dağıtmada, imanı kurtarmada güçlü ve keskin bir etkisi olmadığı genel tecrübe ile sabit olan kitapları yaymak ise, emek ve zaman kaybına neden olacaktır. İmanı kurtarma amacından ziyade, yazarın edebi gücünü vurgulamaya yönelik eserlerde bu etkinin elde edilemeyeceği açıktır. Bu konuda kuşkusu olanlar varsa, Harun Yahya'nın eserlerinin tek amacının dinsizliği çürütmek ve Kuran ahlakını yaymak olduğunu, bu hizmetteki etki, başarı ve samimiyetin açıkça görüldüğünü okuyucuların genel kanaatinden anlayabilirler.
Bilinmelidir ki, dünya üzerindeki zulüm ve karmaşaların, Müslümanların çektikleri eziyetlerin temel sebebi dinsizliğin fikri hakimiyetidir. Bunlardan kurtulmanın yolu ise, dinsizliğin fikren mağlup edilmesi, iman hakikatlerinin ortaya konması ve Kuran ahlakının, insanların kavrayıp yaşayabilecekleri şekilde anlatılmasıdır. Dünyanın günden güne daha fazla içine çekilmek istendiği zulüm, fesat ve kargaşa ortamı dikkate alındığında bu hizmetin elden geldiğince hızlı ve etkili bir biçimde yapılması gerektiği açıktır. Aksi halde çok geç kalınabilir.
Bu önemli hizmette öncü rolü üstlenmiş olan Harun Yahya külliyatı, Allah'ın izniyle, 21. yüzyılda dünya insanlarını Kuran'da tarif edilen huzur ve barışa, doğruluk ve adalete, güzellik ve mutluluğa taşımaya bir vesile olacaktır.


GİRİŞ


İnsan hayatında çok önemli yeri olan bitkiler, 500 binden fazla çeşidiyle Allah'ın insanın faydasına sunduğu sınırsız bir hazinedir. Soluduğumuz tertemiz havanın, hayatta kalmak için ihtiyacımız olan besinlerin, kullandığımız enerjinin kaynağı bitkilerdir. Çarpıcı güzellikteki manzaraların, etkileyici kokuların ve gözalıcı renklerin kaynağı da yine bitkilerdir.
Bitkiler, ışığı besine çeviren fotosentez sistemleri, hiç durmadan enerji ve oksijen üreten, doğayı temizleyen, ekolojik dengeyi sağlayan mekanizmaları, tat, koku, renk gibi sadece insana hitap eden estetik özellikleriyle kendilerini yaratan Allah'ın sonsuz ilmini, sanatını, insanlara karşı olan şefkat ve merhametini gözler önüne seren özel canlılardır. Çok özel faydalar için çok özel sistemlere sahip olan bitkilerin bugüne kadar sadece 10.000 türü incelenebilmiş, bu araştırmalar sonucunda her bitkinin insanı hayrete düşürecek yaratılış özelliklerine sahip olduğu ortaya çıkmıştır.
Allah'ı tanımak, O'nun sıfatlarını görmek, O'na yakınlaşmak isteyenler için bitkilerdeki, hatta onların tek bir yaprağındaki yaratılış mucizelerine biraz daha yakından bakmak, onların harikalarla dolu dünyalarını tanımak çok faydalı olacaktır. Bu sayede, şimdiye kadar sadece bilim adamlarına özgü olduğunu düşündüğümüz çarpıcı gerçeklerin kapısının, samimi ve dikkatli bir ilgi ile tüm insanlara açılabileceğini görebiliriz.
İman edenler, Allah'ın kendilerine verdiği akıl ve anlayış ile O'nun bizim gözlerimizin önüne serdiği mucizeleri görebilirler. Bunun için varlıklara akıl ve hikmet gözüyle bakmak gerekir. Çevresine akıl ve hikmet gözüyle bakmayı öğrenen bir insan, bir çiçeğin renginde, şeklinde ve kokusunda gördüğü sanatın yanında çiçeği çiçek yapan bütün sistemleri de öğrenecek, Allah'ın üstün ilmine ve kudretine daha yakından şahit olacaktır. Allah, hem insanın hem de diğer canlıların yaratılışında ayetler, yani kendi varlığının delilleri olduğunu şöyle bildirir:

Sizin yaratılışınızda ve türetip-yaydığı canlılarda kesin bilgiyle inanan bir kavim için ayetler vardır. (Casiye Suresi, 4)

Bu kitapta bitkilerin çok önemli bir özelliği olan fotosentezi ve içinde fotosentezin gerçekleştiği yaprakların kusursuz tasarımını inceleyerek Allah'ın bu canlılarda yarattığı mucizelere şahit olacağız.
Bu kitabı okurken zaman zaman karşınıza birtakım yabancı isimler, teknik ayrıntılar çıkacaktır. Bunlar ilk bakışta zor ve anlaşılmaz gibi görünebilir. Ancak hepsi, bu konuda hiçbir bilgisi olmayan okuyucuların dahi kolaylıkla anlayabilecekleri şekilde açıklanmıştır. Burada asıl önemli olan nokta, Allah'ın evrendeki herşeyi en küçük ayrıntısına dek üstün bir ilim, hassas bir ölçü ile yarattığını görmektir. Bu sayede, aşağıdaki Kuran ayetlerinin canlı örneklerine şahit olmaktır:

Göklerin ve yerin mülkü O'nundur; çocuk edinmemiştir. O'na mülkünde ortak yoktur, herşeyi yaratmış, ona bir düzen vermiş, belli bir ölçüyle takdir etmiştir. (Furkan Suresi, 2)

Allah, yedi göğü ve yerden de onların benzerini yarattı. Emir, bunların arasında durmadan iner; sizin gerçekten Allah'ın herşeye güç yetirdiğini ve gerçekten Allah'ın ilmiyle herşeyi kuşattığını bilmeniz, öğrenmeniz için. (Talak Suresi, 12)
BİZİM İÇİN ÇALIŞAN YEŞİL FABRİKA


Yaşam Enerjisini Üreten Fabrika

Güneş'in Dünya'ya gönderdiği bir günlük enerji, tüm insanlığın bir gün boyunca ihtiyaç duyacağı enerjinin neredeyse on bin katıdır. Gelişmiş ülkeler, Güneş'ten gelen bu bedava enerjiyi depolayabilmek için yapılan araştırmalara çok yüksek miktarlarda para harcarlar.
Bu amaçla yapılan araştırmalarda, şaşırtıcı bir gerçekle karşılaşılmış ve bitkilerin Güneş'ten gelen enerjiyi depolayan, mükemmel bir sisteme sahip oldukları anlaşılmıştır. Bitkilerin sahip olduğu bu sisteme fotosentez adı verilir. Bitkiler, fotosentez işlemini yapılarında bulunan güneş hücreleri sayesinde gerçekleştirirler. Bu hücreler, güneş enerjisini kimyasal enerjiye dönüştürerek bütün canlılığın temel besin kaynağı olan karbonhidratı üretirler.
Karbonhidratlar, tüm canlıların doğrudan veya dolaylı olarak enerji gereksinimini sağlayan temel besin kaynaklarıdır. Bu enerjiyi elde etmek için mutlaka bitkilerle beslenmek de gerekmez. Hayvanlar da bu bitkilerle beslendikleri için, aynı enerji hayvansal gıdalar yoluyla da insanlara ulaşabilmektedir. Örneğin koyunlar otla beslenir. Yeşil otlar, güneş enerjisini kullanarak, fotosentez yoluyla karbonhidrat moleküllerini sentezler. Güneş enerjisi bu şekilde bitkideki karbonhidrat moleküllerinin içine depolanır. Böylece, otları yiyen koyunlar, bunların içindeki enerji yüklü molekülleri vücutlarına almış olurlar. Daha sonra, karbonhidrat molekülleri hayvanın vücudunda yağa dönüşür. Dolayısıyla bu moleküllerin içerdiği enerji de hayvanın dokularına aktarılmış olur. Bu hayvanlarla beslenen insan da, Güneş'ten bitkilere, oradan hayvanlara, ardından da kendisine ulaşan bu enerjiyi alır ve vücudunda kullanır. Görüldüğü gibi her ne yolla gelirse gelsin tüm canlılar, yaşamlarını sürdürmek için fotosentez yoluyla güneş ışığından elde edilen enerjiyi kullanırlar.
Sadece besinler değil, günlük yaşantımızda kullandığımız maddelerin büyük bir bölümü de en başta fotosentez yoluyla elde edilen enerjiyi bize aktarırlar. Örneğin, petrol, kömür, doğal gaz gibi yakıtlar fotosentez yoluyla güneş enerjisinin depolandığı enerji kaynaklarıdır. Yakacak olarak kullandığımız odun için de aynı durum geçerlidir. Sadece bu maddeler açısından bakıldığında bile fotosentezin ne kadar hayati bir öneme sahip olduğu anlaşılır. Bilim adamları açısından fotosentezin sırlarının keşfedilmesi ve bu işlemde yer alan mekanizmaların gün ışığına çıkarılması çok önemlidir. Eğer bu süreç anlaşılabilirse; besin üretimini artırmak, doğayı en verimli şekilde kullanmak, güneş enerjisinden maksimum düzeyde faydalanmak, yeni ilaçlar geliştirmek, güneş enerjisiyle çalışan çok hızlı ve çok küçük makineler tasarlamak mümkün olacaktır.
Ancak hemen belirtmek gerekir, fotosentez hakkında bilinenler, onu taklit ederek güneş enerjisini depolayacak sistemlerin üretilebilmesi için henüz yeterli değildir. Buna rağmen, aklı ve şuuru olmayan bir yaprak için fotosentez çok kolay bir işlemdir. Akıl, eğitim ve ileri teknoloji sahibi insanlar bu sistemin taklidini dahi yapamazken, milyarlarca yıldır yüz trilyonlarca yaprağın tek tek fotosentez işlemini gerçekleştirebiliyor olması hayranlık vericidir. Bu kimyasal işlem, bitkiler tarafından ilk yaratıldıkları günden beri hiç aksamaya uğramadan gerçekleştirilmektedir. Yeşillik olan her yerde, güneş enerjisi kullanarak, karbondioksit ve sudan, şeker oluşturan bir fabrika çalışıyor demektir. Yediğiniz ıspanak, salatanızdaki maydanoz, balkonunuzdaki sarmaşık, siz farkında olmadan, sizin için sürekli üretim yapmaktadırlar. Bu, üstün ilim sahibi Allah'ın insanlara olan şefkatinin bir sonucudur. Allah, bitkileri insanların ve tüm canlıların yararına hizmet edebilecekleri şekilde yaratmıştır. İnsanın, bugünkü teknolojiyle bile kavrayamadığı bu kusursuz sistemi yapraklar milyonlarca yıldır işletmektedirler. Allah, Kuran'ın bir ayetinde, insanların bir tek ağacı bile yoktan var etmesinin imkansız olduğunu şöyle bildirir:

(Onlar mı) Yoksa, gökleri ve yeri yaratan ve size gökten su indiren mi? Ki onunla (o suyla) gönül alıcı bahçeler bitirdik, sizin içinse bir ağacını bitirmek (bile) mümkün değildir… (Neml Suresi, 60)

Allah, tüm evreni üstün bir ilim ve sanatla yaratmıştır. Yeryüzündeki canlılığı meydana getiren bütün sistemler de bu eşsiz yaratılışın bir sonucu olarak birbirleriyle büyük bir uyum içindedirler. Uzaydaki yıldızlardan, tek bir atomun çevresinde dönen elektronlara kadar her sistem, her yapı bir diğerine bağlı veya bir diğerinin tamamlayıcısıdır.
Bu üstün tasarımda fotosentezin çok önemli bir yeri vardır. Şuursuz bitki hücreleri, toprağı, suyu, havayı ve Güneş'i kullanarak, toprağın içinden belirli oranlarda mineralleri ve suyu alarak, insan için besin üretirler. Güneş ışığından aldıkları enerji ile bu malzemeleri parçalar, sonra parçaladıkları malzemeleri besinleri oluşturacak şekilde biraraya getirirler. Burada kısaca özetlenen bu işlemin her aşamasında ayrı bir akıl, şuur ve planlama görülür. Bitkilerdeki bu hayranlık uyandıran sistem, ortaya koyduğu sonuçlarıyla, çok açıktır ki insanın faydası için özel olarak tasarlanmış bir yaşam kaynağıdır.
Buraya kadar gördüğümüz gibi, güneş enerjisinin yeryüzündeki yeşil bitkilerle olan mükemmel uyumu, tüm canlılığın dolayısıyla da insanlığın varlığını sürdürebilmesi için zorunlu olan temel besin kaynağını meydana getirmektedir. Bir başka ifadeyle, insanların ve tüm canlıların rızkı göklerden yeryüzüne uzanan zincirleme bir sistemin sonucu olarak yaratılmaktadır. Bu konuya Kuran ayetlerinde şöyle işaret edilmektedir:

De ki: "Sizi göklerden ve yerden rızıklandıran kim?" De ki: "Allah, gerçekten ya biz, ya da siz her halde bir hidayet üzerindeyiz veya apaçık bir sapıklıkta." (Sebe Suresi, 24)

Ya da halkı sürekli yaratmakta olan, sonra onu iade edecek olan ve sizi gökten ve yerden rızıklandıran mı? Allah ile beraber başka bir ilah mı? De ki: "Eğer doğru söylüyor iseniz, kesin-kanıt (burhan)ınızı getiriniz." (Neml Suresi, 64)

Her bitki, insanın faydası için özel olarak yaratılmış, kendi kendine çalışan, hava, su ve Güneş gibi en bol ve en masrafsız kaynakları kullanan bir enerji santrali ve bir besin fabrikasıdır. Yapraklar, bu santralin hem güneş enerjisini toplayan enerji panelleri hem de besin üreten fabrikalarıdır. Bitkiler bu kimyasal işlemlerin yanında tat, koku ve renkleriyle de üstün bir sanat ve estetiğin ürünüdürler. Her parçası büyük bir ilimle yaratılmış olan yaprağın ve fotosentezin aşamalarını incelemeden önce, yaprakların genel yapılarındaki mükemmel tasarıma bir bakmak gerekir. Bu sayede sadece fotosentez işleminin değil, bu işlemi yapan yapı ve sistemlerin de bilinçli bir tasarım ile yaratılmış olduğunu yakından görmek mümkün olacaktır.


Fabrika Nasıl Çalışıyor?

Çok gelişmiş mikroskoplarla bir yaprağı yakından inceleyecek olursanız, Allah'ın yaratma sanatı bütün ihtişamıyla bir kez daha karşınıza çıkar. Tek bir yaprağın içinde kusursuz bir üretim sistemi kurulmuştur. Bu sistemi daha iyi anlayabilmek için yaprak içinde görev alan yapıları günlük hayatta kullandığımız aletlere benzetebiliriz. Yaprağın detaylarını büyüterek incelediğimizde her an faaliyette olan tüpler, özel işlemler için inşa edilmiş odalar, dev bir düdüklü tencere gibi çalışan subaplar, binlerce işlemi kontrol eden sayısız düğme ve hiç durmadan koşuşturan işçilerle dolu otomatik bir besin fabrikası ile karşılaşırız. Daha dikkatli bakacak olursak, belirli noktalara yerleştirilmiş zaman ayarlayıcılarını, termostatları, nem ölçerleri, geri bildiri sistemlerini ve ısı kontrol mekanizmalarını da görebiliriz.
Her tarafı bir ağ gibi kaplamış olan boru hattı hammaddenin üretim birimlerine ulaştırılmasını ve üretim birimlerinde elde edilen ürünün bitkinin dokularına dağıtılmasını sağlar. Bu boru hattı bitkinin aldığı besin suyunu yukarı doğru çıkartırken, bir taraftan da yapraklarda üretilen şurubu bütün ağacın beslenmesi için iç bölgelere doğru gönderir. Bu kanalların hepsi yalnızca hayati sıvıları taşımakla kalmaz, aynı zamanda ağaçta ve yaprakta iskelet görevi görürler. Bu harika bir tasarımdır. Çünkü insanlar tarafından inşa edilen yapılarda, binaların taşıyıcı elamanları (kolonlar, kirişler vs) ve binanın su tesisatı ayrı ayrı inşa edilirler. Bitkilerde bu iki ihtiyacın tek bir kalemde çözüldüğü harika bir tasarım vardır. Bir sonraki bölümde bu tasarımın detaylarını göreceğiz.
YAPRAKTAKİ TASARIM VE YAPRAK ÇEŞİTLERİ


Yaprağın hangi parçasını incelersek inceleyelim, sonsuz bir aklın ve sanatın izlerini görürüz. Yaprağa dıştan baktığımızda gördüğümüz biçim ve yapılar, belirli bir amaca yönelik bir tasarım içerir. Örneğin, yaprağın maksimum güneş ışını alması için düz durması gerekir. Ancak, yaprak böyle durabilmek için özel bir dizayna sahip olmalıdır. Yaprağı bir gazete ya da dosya kağıdına benzetmek yaprağın düz durması için gerekli olan bu dizayn hakkında daha iyi fikir verecektir. Bir düşünün, gazete ya da dosya kağıdını düz tutmak istediğinizde ne olur? Tabi ki kağıt kıvrılarak ikiye katlanır. Bu durumda yapmanız gereken kağıdı, ona yanlardan belirli bir kıvrım vererek dik tutmaktır. İşte, yaprakların dik durması için de böyle belli bir kıvrıma sahip olmaları gerekir.
Yaprakların dik durarak, güneş ışığından daha fazla yararlanmalarının bir nedeni de yapılarında bulunan "midrib" adı verilen ana damardır. Bu damar, yaprağın ortasından geçerek onu bitkiye bağlar. Ayrıca, midribden çıkarak yaprağın yüzeyine yayılan başka damarlar da vardır. Midrib ve bu yan damarlar, yaprağın düz durmasını sağlayan iskelet görevi görürler.1
Peki, yeryüzünde sayılamayacak çoklukta bulunan yapraklardan her biri ince bir hesap isteyen bir eğime ve düz durmaları için gerekli olan bir damar sistemine nasıl sahip olmuşlardır? Elbette, bir yaprağın kendi kendine, güneş ışığından maksimum oranda faydalanmasının daha iyi olacağını akletmesi imkansızdır. Ayrıca, yaprakların dik durmak için gerekli olan eğimi uç kısımlarına vererek yeşermeleri ya da ortalarında iskelet görevi görecek bir damar sistemi oluşturmaya karar vermeleri de mümkün değildir. Tüm bunların tesadüfen kendi kendine oluşması da kesinlikle imkansızdır. Sonuç olarak, yukarıdaki sorunun cevabı çok basittir: Yaprakların damar sistemini de, uç kısımlarındaki kıvrımı da tasarlayan ve yaratan Allah'tır.
Yaprak, mekanik bir destek gibi iş gören damarlar üzerine serilmiş bir kumaş parçasına benzer. Bu sistemin etkili olarak kullanılması için yaprağın, dokusunu desteklemek için kullanacağı enerjiyi en az seviyede tutması gerekir. Yaprak için bu çok kolaydır. Çünkü, yaprağın ortasından geçen bir ana destek ve bu destekten yaprakların kenarlarına uzanan ikincil destekler vardır. Özellikle, ana damarın bulunduğu yer yaprağın ağırlık dağılımını dengelemede çok önemlidir.2 Şöyle ki, ana damarın kaldırma gücü, bağlantı noktasından uzaklaşıldıkça azalır, ağırlık ise uzaklaşıldığı oranda artar. Örneğin ağır bir kitabı kolunuzu ileri uzatarak tutarsanız, kolunuzun kitabı kaldırma gücünün azaldığını, kitabın kolunuza etki eden ağırlığının ise arttığını hissedebilirsiniz. Ancak, ana damar yaprağın tam ortasından geçtiği için üzerindeki ağırlık eşit miktarda dağılır.3
Bu sıradan bir olay değildir. Dikkat edin! Hiçbir denge kesinlikle tesadüfen oluşamaz. Bir düşünün, tuğlalar tesadüfen biraraya gelerek sağa sola yıkılmayan bir bina oluşturabilirler mi? Ya da herhangi bir köprü ağırlık merkezi hesaplanmadan inşa edilirse ayakta durabilir mi? Tabi ki, bu iki örnek ve daha bunların benzeri binlerce örnekte olduğu gibi madde tesadüfen biraraya gelerek belli bir düzen ve denge oluşturamaz. Canlı ya da cansız, her varlığı belli bir düzen ile yaratan Allah'tır. Allah, küçücük bir yaprağı da üzerinde milyarlarca insanın rahatlıkla yaşayabileceği kadar büyük olan Dünya'yı da üstün bir tasarım ile yaratmıştır. Bir şeyin büyük ya da küçük olması önemli değildir, Allah'ın yaratmasında hiçbir eksiklik olmaz. Kuran'ın ayetlerinde, Allah'ın herşeyi mükemmel bir şekilde yarattığı ve hiç kimsenin O'nun yarattığı evrende bir bozukluk bulmaya güç yetiremeyeceği şöyle bildirilir:

O, biri diğeriyle 'tam bir uyum' (mutabakat) içinde yedi gök yaratmış olandır. Rahman'ın yaratmasında hiçbir 'çelişki ve uygunsuzluk' göremezsin. İşte gözü çevirip gezdir; herhangi bir çatlaklık (bozukluk ve çarpıklık) görüyor musun? Sonra gözünü iki kere daha çevirip gezdir; o göz (uyumsuzluk bulmaktan) umudunu kesmiş bir halde bitkin olarak sana dönecektir. (Mülk Suresi, 3-4)

Tüm bunların yanı sıra, bir yaprağın yapısal mekanizmasının tasarımında daha pek çok işlevsel mucize vardır. Yaprakların yapısal mekanizmalarını araştıran, Wisconsin Üniversitesi'nden Tom Givnish, bu konuyla ilgili şöyle demektedir:
Eğer bir tek mekanik verimlilik değerlendirmeye alınsaydı bütün yaprakların üçgen olması gerekirdi.4
Elbette yaprağın tasarımında sadece mekanik yapı değil, daha birçok kompleks yapı da devreye girmektedir. Bunun bir sonucu olarak yapraklar üçgen değildir, başka özelliklere de sahiptirler. Mesela yaprakların sıralanmasında ortaya çıkan matematiksel hesaplar bunlardan biridir. Yapraklar dizilirken biri diğerine gölge yapmayacak şekilde dizilirler. Givnish bu konuda şunları söylemektedir:
Üçgen yapraklar ince dallar boyunca güneş ışığını verimli olarak toplayacak şekilde dizilemezler, çünkü üçgenler sıkışık olarak biraraya gelemezler. Ancak yaprağın tabanı, uçurtma şeklinde iyice incelirse bir daire veya spiral şeklinde dizilerek birbirlerinin üstünü kaplamazlar.5
Yaprakların özel tasarımı, bulundukları iklim koşuluna, hayat sürelerine ve saldırıya uğrama ihtimallerine göre de değişir. Örnek olarak çoban püskülünü alalım: Bu bitki keskin dikenlere sahiptir. Ancak bu dikenler, daha çok bitkinin alt kısmındaki yapraklarda bulunmaktadır. Üst taraftaki yapraklarda genellikle dikenli uca rastlanmaz. Bu tasarımın önemli bir nedeni vardır; alt taraftaki dikenler, yaprakları, yaprak yiyen hayvanlara karşı korumaktadır. Hayvanlar bitkinin üst kısımlarına erişemedikleri için, üst taraftaki yapraklar için böyle bir önlem almaya gerek kalmamıştır.6 Birçok bitki, saldırılara karşı koymak için böyle keskin dikenleri kullanır. Dikenli yapraklara, her mevsim yeşil kalan ağaçlarda daha sık rastlanır. Bu yapraklar çok özel bir tasarıma sahiptirler. İğnemsi yapıları sayesinde don olaylarına karşı korunurlar. Ayrıca, topraktaki su donduğu zaman sıvı kaybetmemeleri için özel olarak kalın bir mumsu tabakayla kaplı olarak da yaratılmışlardır.
Diğer yandan, boru çiçeği veya asma gibi tırmanıcı bitkilerin büyük bir kısmı, tabanı kalp şeklinde olan yapraklarla kaplıdır. Bu bitkiler destek olarak kendi gövdelerini değil, başka bitkilerin gövdelerini kullanırlar. Tırmanıcı bitkiler, yapraklarını devamlı Güneş'e çevirmek zorundadır. Ancak, sarıldıkları bitki üstten gelen ışığı engelleyeceği için yaprak, aynı seviyede kalmak yerine bitki sapına en uygun açıya doğru yer değiştirir, böyle bir durumda yapraklar yüzlerini Güneş'in geldiği yöne doğru çevirirler.
Yapraklardaki bir diğer tasarım mucizesi de rüzgarlı günlerde fark edilir. Bilindiği gibi bitkilerin yaprak yüzeyi genellikle geniş olur. Bu onların güneş enerjisini daha fazla alabilmeleri içindir. Ancak, şiddetli bir rüzgar ya da fırtına, bu geniş yüzeyler üzerinde yelken etkisi yaparak bitkinin savrulmasına ve parçalanmasına yol açabilir. Ancak bunların hiçbiri olmaz. Çünkü, yaprağın yapısal özellikleri, rüzgarın etkisini azaltacak şekilde yaratılmıştır. Bitkide iskelet görevi gören selüloz ve lif gibi dokular büyük bir esneme yeteneğine sahiptirler. Ayrıca yapraklar bitkinin uzama yönünde gelişirler. Bu özellikler bitkinin rüzgarın yıkıcı etkisinden korunmasına yardımcı olur. Çünkü bu sayede yaprak rüzgar yönünde eğilebilir.7
Yaprakları rüzgardan koruyan ikinci bir özellik ise, rüzgarın şiddeti arttıkça yaprağın içeri doğru katlanabilmesidir. Bu sayede yaprak, rüzgarın içinden aktığı, koni şeklinde aerodinamik bir yapı oluşturur. Dahası, yapraklar bu aerodinamik yapının rüzgara karşı gücünü artırmak için toplu olarak birbirlerinin içine geçebilirler. Yani bir dal boyunca çıkan yapraklar rüzgar yönünde eğildiklerinde bir sonraki yaprağı örtecek şekilde kapanırlar.8
Bitkilerdeki tasarım mucizesi, karadakilerle sınırlı değildir. Karadaki bitkilerin rüzgara karşı koyacak şekilde tasarlanması gibi sudaki bitkiler de akıntının etkisini en aza indirecek şekilde tasarlanmışlardır. Suda akıntının rüzgara benzeyen bir etkisi vardır. Ancak, yosun gibi deniz altı bitkileri, dalgaların ve akıntıların gücüne, sahip oldukları özel tasarım sayesinde karşı koymakta zorlanmazlar. Bu bitkilerin karadakiler gibi kalın odunsu gövdeleri yoktur. Ama kayalara yapışan kökleri çok sağlamdır ve esnek gövdeleri ile dinamik yaprakları sayesinde dengelerini akıntının şiddetine göre ayarlayabilirler. Eğer dış etki dayanılmaz bir orana gelirse bitki ilk önce yaşlı yaprakları feda eder. Bu büyük yapraklar gittiğinde rüzgara veya akıntıya olan direnç azalır ve bitkinin daha fazla dayanmasına imkan tanır.9
Sonuç olarak, her bitkinin yapısal özellikleri bir diğerinkinden farklıdır. Bitkiler bir yandan fotosentez yaparak oksijen ve besin üretir, diğer yandan da sahip oldukları çeşitli özelliklerle, belirli görevleri yerine getirirler. Bu özel tasarımları sayesinde, bazı bitki yaprakları su ve besin depo ederken, bazıları dikensi yapılarıyla savunma yapabilirler, başka nesnelere sarılıp tutunabilirler, üreme yapabilirler ya da karmaşık tuzaklarla böcek gibi ufak hayvanları yakalayarak beslenebilirler. Bu yüzden hangi bitkiyi incelersek inceleyelim, birçok olağanüstü özelliğe sahip olduklarını görür, böylece, bitkilerin yaratılışındaki sonsuz ilim ve sanata şahit oluruz. Hiç şüphesiz, bu ilim ve sanat, canlı cansız tüm varlıkları üstün bir hikmetle yaratmış olan Allah'a aittir:

O, gökten su indirendir. Bununla herşeyin bitkisini bitirdik, ondan bir yeşillik çıkardık, ondan birbiri üstüne bindirilmiş taneler türetiyoruz. Ve hurma ağacının tomurcuğundan da yere sarkmış salkımlar, -birbirine benzeyen ve benzemeyen- üzümlerden, zeytinden ve nardan bahçeler (kılıyoruz.) Meyvesine, ürün verdiğinde ve olgunluğa eriştiğinde bir bakıverin. Şüphesiz inanacak bir topluluk için bunda gerçekten ayetler vardır. (En'am Suresi, 99)


Çöl Sıcağından Etkilenmeyen Yapraklar

Çöl deyince aklımıza hiçbir canlının kolay kolay yaşayamayacağı bir ortam gelir. Gerçekten de çölde yaşayan canlıların sayısı oldukça azdır. Ancak bu zor koşullara rağmen çöl ortamında da hiç aklımıza gelmeyecek mucizelerle karşılaşırız. Bu kurak ortama daha yakından baktığımızda çeşitli özelliklere sahip bitkiler dikkatimizi çeker. Bu bitkiler, özel tasarımları ve farklı çeşitleriyle çok zor koşullarda rahatça yaşayabilmektedirler. Onlar bu iklim koşulları için özel olarak yaratılmış birer mucizedirler.
Çöl bitkileri, aşırı sıcakla ve susuzlukla başa çıkmak için iki yola başvururlar. Birincisi, sahip oldukları dayanıklı yapıyı kullanmak, ikincisi de uykuda kalmaktır. İlginç yapıları ve özel tasarımları sayesinde kurak iklimlerden zarar görmeyen bu bitkilerde yaprak; hem gövde, hem fotosentez organı, hem bir besin ve su deposu hem de kalın yapısıyla bir savunma organıdır.10
Bazı depo görevi gören yapraklar ise etrafta bulunan kayaları taklit eden yapılarıyla birer kamuflaj uzmanıdırlar. Çeşitli hayvanların kamuflaj yapması sık karşılaştığımız mucizelerden biridir.11 Ancak bir bitkinin kamuflaj yapması fazla alışık olmadığımız bir durumdur. Çevresindeki kayaları taklit edebilen bir bitkinin hangi özelliklere sahip olması gerektiğini düşünürsek, ne kadar hayret verici bir olayla karşı karşıya olduğumuzu daha iyi anlayabiliriz. Herşeyden önce bu bitkinin, çöl ortamını çok iyi bilmesi, çevre koşullarından haberdar olması gerekir. Buna göre etraftaki bazı hayvanlardan kurtulmak ve aynı zamanda aşırı sıcaklara karşı koymak için belirli bir şekil ve savunma sistemi planlamalıdır. Sonuç olarak kayaların kendisi için en ideal model olduğuna karar vermelidir. Kendini kayalara benzetirse göze batmayacağını ve taş gibi hacimli bir yapının depo görevini rahatça yerine getirebileceğini düşünmeli ve bütün kimyasal yapısını bu kararına göre değiştirmelidir. Ne bir akla, ne bir şuura, ne bir göze sahip olmayan bitkilerin, kendileri için böyle hayati önemi olan kararlar alamayacakları ve bu kararlarını uygulayamayacakları çok açıktır. Peki, bitkileri bulundukları ortam için en uygun yapıya ve şekle kavuşturan nedir? Tüm canlıların tesadüfler sonucunda meydana geldiğini iddia eden evrimciler, kaya taklidi yapan çöl bitkilerinin de, bu özelliğe tesadüfen sahip olduklarını iddia ederler. Bu iddiaları yukarıda anlatılan senaryodan çok daha mantıksızdır. Tesadüfen meydana gelen hangi olay, bir bitkiye kusursuz bir taklit yeteneği ve çöl sıcağında en çok ihtiyacı olan su deposunu kazandırabilir? Bu bitkileri tüm bu özellikleri ile yaratanın üstün bir ilim ve akıl sahibi olan Allah olduğu çok açıktır.


Yapraklardaki su deposu

Çöl bitkilerinin su ve besin maddelerini depo edecek şekilde tasarlanmış olan depo yaprakları, dam koruğu (Sedum) bitkisinde olduğu gibi silindir şeklinde veya makas otunda (Carpobrotus) olduğu gibi prizma şeklinde olabilir. Kurak bölgelerde yaşayan bu bitkiler su depolama özelliklerinden dolayı taze bir görünüme sahiptirler. Su, gövde ya da yapraklarda geniş, ince duvarlı hücrelerde korunmaktadır. Bu yaprakların kalın üst tabakası su kaybını azaltır. Çöl bitkilerinin kusursuz tasarımlarının bir başka özelliği ise küre şeklinde olmalarıdır. Çünkü küre, en küçük yüzey alanına sahip olması nedeniyle en etkili su depolama şeklidir. Çöl bitkilerinin kalın gövdeleri, küre şekilleri ve gündüzleri kapalı, geceleri açık olan gözenekleri, buharlaşma ile su kaybını azaltan bir yapı meydana getirir.12
Her bitki suyu farklı bölümlerinde depo eder. Örneğin, Yüzyıl bitkileri yapraklarında, gece açan Cereus bitkisi yeraltındaki soğanında, kaktüs ise tombul gövdesinde su depolar. Sabır otu gibi bitkiler ise nadir olarak yağan yağmurları yakalamak için oluk şekilli yapraklarını açık tutarlar. Bunun tam tersine Sarracenia minor gibi yağışlı bölgelerde bulunan bitkilerin yaprakları, aşırı yağmurdan korunmak için şemsiye gibidir. Her bitkinin bulunduğu koşullara uygun bir şekle sahip olması, Allah'ın kusursuz yaratışının bir göstergesidir.
Kaktüsler ne silindir ne de küre biçimine sahiptirler. Yüzeyleri düzdür. Neredeyse hepsinin uzunlamasına çizgileri ya da yüzeylerinde çok sayıda dikenimsi çıkıntıları vardır. Bu bitkiler, çizgili yüzeyleri içlerinde depo edilen suyun miktarına göre daralma ve gevşeme özelliğine sahiptir. Kaktüs ısıyı yayabilen, su dolu gövdesini hayvanlardan koruyan ve dikleşen iğnelere sahiptir. Mumlu üst tabaka, sıcağın bitkinin içine işlemesini azaltarak bitkiyi korur. Ayrıca bu bitkilerin renkleri solgun ve parlaktır. Böylece üzerlerine düşen ışının çoğunu yansıtırlar; bazıları da güneş ışığını yansıtacak beyaz tüylerle kaplanmıştır. Her insan mutlaka bir kaktüs görmüştür. Ancak, kaktüse ait özelliklerin estetik dışında, birçok amaca yönelik olarak yaratılmış olması büyük bir mucizedir. Kaktüsün dikenlerinden üzerindeki beyaz tüylere kadar her bir parçasında bir plan, tasarım ve amaç vardır. Tüm bunlar kaktüslerin tesadüfen meydana gelmiş bitkiler olamayacağını, üstün bir akıl tarafından tasarlanarak yaratıldıklarını gösteren önemli delillerdir.
Bu bitkilerin bazı türleri, özellikle "pencere yaprağı" bitkisi tüm gövdesini toprağın altına gömer ve sadece yaprak uçlarını dış yüzeye çıkarıp gösterir. Yaprak uçları saydamdır ancak yaprak uçlarının biraz içeri tarafında yeşil fotosentez yapan hücreler bulunur. İnce çizgiler şeklinde dizilmiş olan bu hücreler pencere denilen yaprak uçlarından giren ışığı yakalayıp fotosentez işlemi için kullanırlar.13 Bu çok özel tasarımları sonucunda su kaybını büyük miktarda azaltan ve toprağın altında kalarak kızgın güneşten kurtulan bitki, birçok canlının kısa bir süre bile dayanamadığı çöl sıcaklarında hiç sıkıntı duymadan yaşar. Çölde yaşayan bitkilerin özellikleri bunlarla da sınırlı değildir.
Çöl bitkileri, birçok özelliklerinin yanı sıra susuzluğa da son derece dayanıklı şekilde yaratılmışlardır. Örneğin Amerikan cüce sedir ağacı Peucephyllum ve geceleri biraz nem alıp aşırı kurak durumlarda bile yeşil kalabilen Capparis spinosa bitkisi susuzluğa tamamen dayanabilenlerdendir. Birçok çalı ve ağaç da kuraklığa karşı dayanıklıdır; çünkü dayanıklı yaprakları çeşitli özelliklere sahiptir. Örneğin bazıları küçük yapraklara sahiptir. Bunlar iğne ya da buket şeklindedir; küçük boyutları sayesinde Güneş'in sıcaklığına daha az yüzey alanı maruz kalır.14
Bazı kısa ömürlü bitkiler ise, yapraklarının sadece bir kenarında, genellikle üst kısımda, gözeneklere sahiptirler. Bu tasarım, özellikle rüzgarın yoğun olduğu koşullarda buharlaşma ile su kaybını önler. Bazı yaprakların her iki kısmında da gözenekler vardır; özellikle etrafta sis olduğu zamanlarda bu gözeneklerle havadan nem alırlar. Bazı bitkilerde özellikle Manzanitanın yaprakları dik durabilecekleri şekilde desteklenmişlerdir. Böylelikle yüzey kısımları Güneş'e daha az maruz kalır ve daha az su kaybı olur. Kaktüsler gibi yaprakları olmayan bitkilerden biri olan Paloverde de fotosentezi gövdesi ile yapar. Çünkü çöl ortamında fazla sayıda yaprağa sahip olmak daha fazla suyun buharlaşması anlamına gelmektedir. Görüldüğü gibi çöl ortamına dayanıklı olan bitkiler, birçok farklı özelliklere sahiptirler. Her birinin çöl sıcağına karşı aldığı benzersiz bir önlem vardır. Bitkilerin birbirlerinden farklı olarak, ayrı ayrı bu önemleri alamayacakları açıktır. Çünkü bitkilerin bunun için gerekli olan bilinç, akıl ve bilgi gibi özellikleri bulunmamaktadır. Her bitkiyi, bulunduğu ortama en uygun ve benzersiz özelliklerle yaratan Allah'tır.


Çöl bitkilerinin uykuda kalma yöntemi

Buraya kadar özel yapıları ile kuraklığa ve susuzluğa dayanabilen bitkilerden örnekler verildi. Ancak çöl ortamına dayanıklılık konusunda, bir de en başta söz edilen ikinci bir yöntem vardır: "Uykuda kalma"
İşte bu ikinci yöntemi uygulayarak uykuya yatanlar "efemeral" bitkiler olarak bilinmektedir. Genellikle bir sene yaşayan ve kuraklık durumlarında tohum halinde uykuda kalarak susuzluktan kurtulan bu bitkiler, yağmurdan sonra çok çabuk bir şekilde tohumlarını açıp yeşillenirler. Ve fideleri çok hızlı bir şekilde büyür. Çiçeklenme çok kısa bir sürede oluşur ve böylece bitki, tohumdan tohum üretme aşamasına sadece birkaç hafta içinde geçebilir.
Çölde yağmur dengesizdir, bu yüzden efemerallerin eğer tüm tohumları tek bir yağmur ile yeşillense ve sonra birden gelen bir kuraklık ile ölseler, nesilleri tükenebilirdi. Ama bu bitkilerin çoğu, sadece büyük miktarda yağmur aldıktan sonra tohumlarının yeşillenmesini sağlayan mekanizmalara sahiptir. Bu bitkiler "tohum polimorfizmi" adı verilen ve tohumlarının yeşillenme zamanını farklılaştırabilen bir özelliğe sahiptirler. Ek olarak tohumlarda da yeşillenmeyi engelleyici bir madde vardır. Tohuma ilk defa su ulaştığında, onun yüzeye çıkma aşaması tamamlanır. Ancak tohumun yeşillenebilmesi için bu koruyucu maddenin etkisiz hale gelmesi gerekir. Bu işlem ise tohumun ikinci defa suyla buluşmasıyla meydana gelir. Eğer ikinci defa su gelmezse yani yağmur yağmazsa tohum filizlenmez. Bu nedenle tohumlar ıslanmak için iki evreye ihtiyaç duyar; ilki tohumların yüzeye çıkmasına neden olur, ikincisi de yenilenmeyi engelleyici maddeyi giderir ve ancak bu engelleyici maddenin gitmesinden sonra yeşillenme meydana gelir.
Diğer efemerallerin tohumları, örneğin "acı kavun" cinsinin tohumları sadece karanlıkta yeşillenir. Bir seri ıslanma ve kurumanın ardından tohumun dış yüzeyi değişir ve oksijenin embriyoya serbest bir biçimde geçişini sağlar. Gerekli olan bu unsurların kombinasyonu, tohumun sadece gömüldükten ve defalarca yağmur gördükten sonra yeşillenmesine neden olur.
Bu bitkilerin oluşumunda kusursuz bir tasarım, plan ve hesap vardır. Herşey, her aşaması ile önceden belirlenmiştir. Tohumların ve filizlerin yok olmamaları için olası tüm şartlara uygun olarak tüm önlemler alınmıştır. Peki efemeral bitkilerinin oluşabilmesi için bu sistemi önceden belirleyen ve bu bitkileri içinde bulunduğu koşullara en uygun şekilde tasarlayan akıl ve ilim kime aittir? Bitkinin hücrelerine mi? Tohumun kendisine mi? Yoksa bu kusursuz ve eksiksiz sistem tesadüfen mi meydana gelmiştir? Tüm bu soruların mantıksızlığı ortadadır. Çevre koşullarına en uygun özelliklere sahip olan bu bitkiler alemlerin Rabbi olan Allah'ın üstün yaratışının eseridir.
Çöl bitkilerinin bir diğer grubu da kuraklıkta yapraklarını döken bitkilerdir. Bu bitkiler su kaynağı azalınca hemen küçük yapraklarını dökerler. Bunlara bir örnek Ocotillo bitkisidir. Bu bitki kuraklık uykusu haline girer ve yağmur düşene kadar bu halde kalır. Yağmur düştüğünde hemen bir dizi yeni yaprak yetiştirmeye başlar. Bazı çalılarda da bu özellik vardır; ama uykuya yatmazlar. Çünkü su desteği artana kadar özel dokularında depolanmış su ve besinlerle yaşayabilecek kadar dayanırlar. Bu dokular "rizom" adı verilen, toprak altında yatay olarak gelişen ve uzun süre yaşayan gövdelerdir. Süsen, Manisa lalesi, Ayrık otu gibi bitkilerin bu tür gövdeleri vardır.15
Buraya kadar incelediğimiz çöl bitkilerine topluca baktığımızda ortaya çok etkileyici bir manzara çıkmaktadır. Bazı bitkiler çölde yaşayabilmeleri için özel sistemler ve yapılarla donatılmışlardır. Çöl bitkileri su depolar, kamuflaj yapar ya da uykuya yatarlar. Bazıları da çeşitli kimyasal yöntemlerle tohumlarının yeşillenmesini engeller. Görüldüğü gibi çöl gibi her türlü mahrumiyetin ve güçlüğün hakim olduğu bir ortamda bile çok sayıda bitki çeşidi ve sıcağa karşı korunma yöntemiyle karşılaşırız. İnsanların ıssız sandığı bir ortamdaki bu bitkiler, üstün tasarımlarıyla Allah'ın sonsuz ilmini ve sanatını bir kez daha göstermektedir.


Sulu Ortamlardaki Bitkilerin İlginç Yaprakları

Göllerde, deniz kenarlarında, tuzlu sularda ve tuz oranı yüksek bataklıklarda yaşayan bitkiler de, çölde karşılaşılan zor koşulların benzeriyle karşı karşıyadır. Ancak, bu tür bölgelerde yaşayan bitkiler de, tüm canlılarda olduğu gibi yaşadıkları ortama uygun özelliklerle yaratılmışlardır. Büyük bir kısmı suyun içinde olan bu bitkilerin yaprak ve gövde yapıları bu ortamlarda yaşamalarına imkan verecek şekilde özel olarak tasarlanmıştır. Örneğin, tuzlu sularda yaşayan bitkiler, çöl bitkileri gibi kalın ve deriye benzer yapraklara sahiptirler. Bu sayede çok fazla miktarda su depolayabilme kapasitesine sahiptirler ve fazla sudan zarar görmezler.
Samphire ve Seablite gibi bitkiler ise bulundukları bölgelerde sıkça su baskınlarına maruz kalırlar. Bu ise, bitkinin gövdesine fazla miktarda tuz girmesine neden olur, bu da bitki için zararlıdır. Ancak bu bitkiler fazla tuzdan zarar görmezler çünkü fazla tuzu sürgünlerinden çıkaran tuz bezelerine sahiptirler. Bu tür şartlar altında yaşayan bitkilere "halofitler" denilir.16
Glasswort gibi tuzlu bataklık bitkileri, düzenli olarak deniz suyu ile çevrilir. Bu tür bitkiler, su yüzeyinde bulunan yaprakları sayesinde hayatta kalırlar. Yaprakların su yüzeyinde kalmasını ise, yaprakların altında havayla dolu özel yapıların bulunması sağlar. Dev Amazon nilüferi de, bu tür yapraklara sahip olan bitkilerdendir.
Su çevresinde veya ıslak topraklarda bulunan bitki köklerinin tamamı su ile kaplıdır. Bu durumda, bitkinin nasıl hava alabileceği sorusu akla gelir. Kökü su içinde yaşayan bitkiler de, diğerleri gibi içinde bulundukları koşullara en uygun özelliklere sahiptirler. Örneğin bataklık bitkilerinin oksijen elde etmelerini sağlayan, suyun içine batan kısımlarındaki "aerenkima" adı verilen bir dokudur. Bu dokulardaki hava bölmeleri genişleme özelliğine sahiptir. Nilüfer, Elodea gibi su bitkilerinde ise oksijen, bitkinin suyun dışında kalan kısmından, yani gövde ve yapraklarından suyun içindeki kısımlarına iletilir.17
Görüldüğü gibi su bitkilerinin köklerindeki hava bölmeleri ve bu bölmelere dışarıdan oksijen taşıyan sistemler olmasa bu bitkiler asla yaşayamazlardı. Bununla birlikte hiçbir bataklık bitkisinin kendi kendine, hava bölmeleri genişleyen bir doku oluşturması mümkün değildir. Böyle bir yapının zaman içinde tesadüflerle meydana gelmesi de imkansızdır. Zaten, bataklıkta veya su içinde yaşayan bir bitkinin, tesadüfen gelişen olayların, milyonlarca yıl boyunca yavaş yavaş bitki köklerine oksijen taşıyacak bir sistemin oluşmasını bekleyecek vakti de yoktur. Çünkü bu sistem olmadan yaşamını sürdürmesi ve çoğalması mümkün değildir. Demek ki bitkideki bu oksijen taşıma ve depolama sisteminin daha bitki ilk yaratıldığı anda eksiksiz ve kusursuz bir halde var olması gerekir. Bu ise kör tesadüflerin değil, sadece kusursuzca planlanmış ve tasarlanmış muhteşem bir yaratılışın sonucunda gerçekleşebilir.


Yapraktaki Bir Başka Mucize:
Havalandırma Sistemi

Bazı bitkilerin sadece kökleri değil, gövdelerinin de büyük bir kısmı su içinde yaşar. Havayla temas edemeyen bu bitkilerin kökleri, kimi zaman 4 metreden daha derinde olur. Bu mesafeye oksijenin basit bir yolla ulaşması imkansızdır. Ancak, Allah bu bitkiler için de en uygun sistemi kusursuzca yaratmıştır. Kökü ve gövdesi suyun altında ve kökü çok derinlerde olan bu bitkilerin havalandırma sistemini, üç yüz metre uzunluğunda, yüz katlı bir gökdelenin yapısı ile kıyaslayabiliriz. Bu tip yüksek binalarda, mühendislerin çözmeleri gereken en önemli problemlerden biri binanın havalandırmasıdır. Bu tip binaların havalandırma problemlerinin çözülmesi için çok yüksek teknolojiler kullanılır. Bina daha proje aşamasındayken; havalandırma boşluklarının yerleri ve çapları, havalandırma motorlarının yerleştirileceği bölgeler, katlara temiz havanın nasıl dağıtılacağı, kirli havanın katlardan nasıl emileceği gibi bütün detaylar hesaplanır ve proje buna göre çizilir.
Bina inşa edilirken projede belirtilen bölgeler, hava kanallarını oluşturacak şekilde boş bırakılır ve bu bölgelere daha sonra havalandırma boruları yerleştirilir. Son olarak da merkezi havalandırma makineleri ve katlara özel havalandırma sistemleri monte edilir.
Bitkilerin yapıları yakından incelendiği zaman, insanoğlunun modern gökdelenlerde kullandığı havalandırma sistemlerinin çok daha üstününün bitkilerin içlerinde kullanıldığı görülür. Bu elbette büyük bir mucizedir. Hiçbir aklı bulunmayan bir bitkinin iç yapısında, mimari ve mühendislik açısından harika olarak kabul edilecek bir havalandırma sisteminin kurulmuş olması, o bitkinin çok üstün bir akıl tarafından yaratıldığını ispatlamaktadır.
Bu havalandırma sisteminin motorları yapraklardır. Elbette bu havalandırma sisteminde de, bazı motorların temiz havayı içeri çekecek, bazı motorların da kirli havayı dışarı verecek şekilde çalışmaları gerekir ki, bina (bitki) içinde tam bir havalandırma sağlanabilsin. Nitekim gerekli planlama yine yapılmış ve yapraklar arasında mükemmel bir iş bölümü yapılmıştır. Genç yapraklar temiz havayı bitkinin içine çeken motorlar olarak görev yaparken, yaşlı yapraklar da bitkinin içindeki kirli havayı dışarı veren motorlar olarak görev yaparlar.
Ancak, motorların bulunması tek başına yeterli olmaz. Ayrıca, bir plan doğrultusunda kurulmuş hava kanalları sistemine de ihtiyaç vardır. Çünkü, motor gibi çalışarak temiz havayı içeri alan yapraklardan temiz hava alınarak, bitkide ihtiyaç duyulan yerlere götürülmelidir. Bu ayrıntı da düşünülmüş ve bitkinin içine mikro ölçekte havalandırma kanalları döşenmiştir. Üstelik bu kanalların planlaması bitkinin en derin noktalarına dahi hava götürecek şekilde yapılmıştır.
Şimdi Allah'ın yaratışındaki kusursuz tasarıma daha yakından şahit olmak için, yaprakların adeta bir motor gibi çalışmalarını ve bitki içindeki havalandırma sistemini daha yakından inceleyelim...
Genç yaprakların görevi rüzgar estiğinde havayı emme, yaşlı yapraklarınki ise havayı dışarı bırakmaktır. Bu emme ve üfleme işleminin çalışma sistemi son derece komplekstir.
Bu tür yaprakların içindeki su buharlaştıkça, yaprakların ısısı azalır. Rüzgar ise buharlaşmayı artırır ve böylece yaprağın ısısı daha da düşer. Bu işlem güçlü rüzgarlarda daha da etkili bir hale gelir. Ancak bu soğuma, yaprağın içinde her bölümde aynı oranda hissedilmez. Yaprakların orta kısmındaki bölgeler dış yüzeylerinden daha sıcak kalır. Araştırmacılara göre bu sıcaklık farkı 1 veya 2°C daha fazla olduğunda oksijeni emme işlemi de tetiklenmiş olur.
Oksijeni emme işleminin tetiklenmesi şöyle gerçekleşir: Yaprağın içine daha yakından bakıldığında, genç yaprakların fotosentez yapan dokuları ile, onların altında yer alan gevşekçe paketlenmiş dokuların bitiştiği noktada çok küçük gözenekler bulunduğu görülür. Bu gözeneklerin açıklığı 0.7 mikrometreye (1 mikrometre, 1 metrenin milyonda birine eşittir) ulaştığında ve yaprağın içindeki ısı 1 veya 2°C'nin üstüne çıktığında, gazlar yaprağın içindeki soğuk bölgeden sıcak bölgeye doğru akmaya başlar. Bu sayede oksijen bitkinin içine doğru alınmış olur. Bu süreç "termoosmoz" olarak adlandırılır. Isı farkı ne kadar büyük olursa o kadar fazla gaz yaprağın içine akar. Örneğin, Amazon zambağında en yüksek oran saatte 30 litre gaz olarak ölçülmüştür.
Termoosmoz, "Knudsen difüzyonu" olarak anılan fizik kuralına dayanır. Normal şartlarda iki farklı bölmede bulunan gazlar gözenekli bir bariyerden geçerek serbestçe dolaşırlar. Ancak 1 mikrometreden (metrenin milyonda biri) küçük gözenekler bu akışı durdurur. Isı açısından denge durumunu sağlamaya çalışan gazlar soğuk bölümden daha sıcak olan bölüme doğru akarlar.
Termoosmoz motoru, havayı bitki içinde öyle güçlü bir basınçla iletir ki, bazen gazın köklerden baloncuklar yaparak çıktığı görülür. Bu emme-üfleme devresi, gazların yaşlı yapraklardan dışarı verilmesiyle tamamlanır. Bu yaşlı yapraklar artık havayı içeriye iletmezler; çünkü gözenekleri gereğinden fazla genişlediği için gazları tutamazlar, böylece gazlar bu yolla dışarı çıkarlar. Görüldüğü gibi bitkinin sahip olduğu her özellik onun için hayati bir önem taşımakta ve her birinin önceden hesaplanarak tasarlandıkları açıkça belli olmaktadır.
Bu havalandırma sistemi sadece su altındaki kökleri canlı tutmak açısından değil, ekolojik olarak da büyük öneme sahiptir. Derin suların dibinde biriken tortular çoğu zaman oksijensiz kalırlar. Bu yüzden demir hidroksit gibi, bitkilere zarar veren kimyasallar üretirler. Su bitkileri köklerinden sızdırdıkları oksijenle bu maddeleri okside ederek zararsız hale getirirler. Bu oksijen sızıntısı sayesinde köklerin etrafındaki toprak zenginleşerek canlıların yaşamasına müsait bir hale gelir ve böylece suyun dibi temizlenmiş olur. Bu da Dünya'daki tüm eko-sistemi doğrudan etkileyen ve canlılığı ayakta tutan karmaşık bir sistem oluşturur.
Görüldüğü gibi, yaratılışın en küçük ayrıntılarında bile iç içe geçmiş muhteşem ve kusursuz sistemler işlemektedir. Bu ayrıntıların her biri derin düşünenlere sonsuz ilim sahibi olan Allah'ın yaratışındaki ihtişamı göstermektedir:
Ki (Rabbim), yeryüzünü sizin için bir beşik kıldı, onda sizin için yollar döşedi ve gökten su indirdi; böylelikle bununla her tür bitkiden çiftler çıkardık. Yiyin ve hayvanlarınızı otlatın. Şüphesiz, bunda sağduyu sahipleri için elbette ayetler vardır. (Taha Suresi, 53-54)


Soğuktan Etkilenmeyen Yapraklar

Kuzey yarım kürenin büyük bir kısmı ormanlarla kaplıdır. Genelde kozalaklı ağaçlardan oluşan bu ormanlar daha çok soğuk iklim koşulları altındadır. Bitkilerin bu soğuk iklime karşı dayanıklı olabilmeleri içinse, diğer bitkilerden farklı bazı özelliklere sahip olmaları gerekir. Örneğin, kış mevsiminde, toprak donmuş haldeyken ağaç kökleri topraktan su alamazlar. Bu şartlar altında yaşayan ağaçlar, kış susuzluğuna dayanıklı olmalıdırlar. Bu dayanıklılığı ağacın yaprakları sağlar. Birçok kozalaklı ağacın dökülmeyen yaprakları sert ve dayanıklıdır. Yaprakların üzerindeki mumlu yüzey, suyun buharlaşma yolu ile kaybını azaltır, bu da yaprakların dökülmesini ya da su basıncı sebebiyle solmasını önler. Ayrıca kozalaklı ağaçların yapraklarının çoğu iğne şeklindedir ve dona karşı çok dayanaklıdır.
Yukardaki paragrafta yaprakların üzerlerinin mum benzeri bir madde ile kaplı olduğunu ve bu yüzden yaprakların su kaybetmediklerinden bahsedildi. Yalnızca bu nokta üzerinde düşünmek dahi bizlere yaratılışın delillerini gösterecektir.
Yaşayan her canlı gibi yaprak da hücrelerden oluşmuştur. Yaprağı oluşturan bitki hücreleri bütün diğer hücreler gibi şuursuz ve akılsız varlıklardır. Yaprağın üzerini kaplayan mumsu tabaka da yine şuursuz hücreler tarafından üretilmiştir. Oysa yaprak adeta dışarıdan fırça ile boyanmış ve verniklenmiş gibi pürüzsüz bir mum tabakasına sahiptir.
Bu durumda yaprağı oluşturan milyonlarca hücre biraraya gelip, yaprağın dış yüzeyini bu tabaka ile kaplama kararı almış olmalıdır. Sonra hücrelerin müthiş bir uyum içinde yaprağın dış yüzeyini özenle mum tabakası ile kaplamaları gerekmektedir. Bu durumda düşünen her insan şu soruları soracaktır:
Yaprakları oluşturan şuursuz hücreler, bu mum tabakasını üretmeyi nasıl akletmişlerdir?
Hangi akıl, bilgi ve yetenek ile yaprağın üzerini, hiçbir taşma, pürüz olmadan veya boşluk kalmadan, mum tabakası ile özenle kaplamışlardır?
Yapraklar bu mum tabakasının kendilerini soğuktan koruyacağını nereden bilmektedirler?
Elbette bu soruların tek bir cevabı vardır. Yaprak ve yaprağı oluşturan hücreler Allah tarafından yaratılmış ve bu hücrelerin genetik programlarına gerekli bütün bilgiler Allah tarafından yazılmıştır. Hücreler de bu bilgi doğrultusunda, en ideal formüle sahip mumsu maddeyi üretir ve bu maddeyi en ideal oranlarda hep birlikte salgılarlar. Böylece yaprağın üzeri pürüzsüz bir şekilde mum tabakası ile kaplanmış olur. Kışın yapraklarını döken ağaçların aksine, yapraklarını dökmeyen bu bitkiler her bahar mevsiminde yeni yapraklar açarak enerjilerini artırırlar. Yeteri kadar ılık bir hava olduğunda da fotosentez yapabilir ve kısa yaz aylarında enerji kaynaklarını üremek için yoğunlaştırırlar.
Dikkat edilmesi gereken bir başka nokta da kozalaklı ağaçların koni biçimindeki şekilleridir. Bu da -yeryüzündeki her detayda olduğu gibi-özel olarak yaratılmış bir ayrıntıdır.
Mimari ve inşaat mühendisliği alanında, özellikle binaların çatı bölümleri yapılırken, göz önünde bulundurulması gereken en önemli noktalardan biri kar yüküdür. Normal şartlarda yalnızca kendi yüklerini ve rüzgar yükünü taşıyan çatılar, yoğun yağan bir kardan sonra oldukça yüksek bir kar yükü etkisi altında kalırlar. Özellikle endüstriyel yapıların ve köprülerin tasarımlarında bu kar yükü etkisi büyük bir özenle hesaba katılmak zorundadır. Bu nedenle, çatılar özel bir eğim verilerek inşa edilir ve taşıyıcı sistemler kar yükü hesaba katılarak güçlendirilir. Özellikle kışın büyük bölümünün kar altında geçtiği İsveç, Danimarka, Norveç gibi kuzey ülkelerinde evlerin tamamına yakınının çatısı koni biçiminde ve bu mühendislik hesabı gözönünde bulundurularak inşa edilir. Yoksa kar yükü çatının ve binanın üzerinde ciddi hasarlara neden olur.
Kozalaklı ağaçların şekilleri incelendiği zaman insanoğlunun mühendislik hesaplarıyla, kar yüküne karşı aldığı önlemin, ağaçlarda zaten alınmış olduğunu görürüz. Ağacın koni şeklinin oluşturduğu eğim, üzerine düşen karın kolaylıkla yere dökülmesini sağlar. Böylece ağacın üzerinde aşırı miktarda kar toplanmaz; ağaç dallarının kırılması önlenmiş olur. Bu üzerinde düşünülmesi gereken bir noktadır. Soğuk iklimlerde, kar yükünün dallar üzerinde meydana getireceği etkiyi hesaplayan, buna göre ağaç dallarının en ideal açı ile büyümelerini sağlayan, böylece kar yükünün etkisini en aza indiren akıl kime aittir?
Ağaca mı?
Ağacı oluşturan bitki hücrelerine mi?
Toprağa mı?
Yoksa şuursuz, kör tesadüflere mi?
Elbette ağaca bu tasarımı veren, ağacı da, bitki hücrelerini de, toprağı da yoktan var eden Allah'tır.
Bu tasarımın bir başka harika yönü daha vardır. Söz konusu şekil yağan karın tümünün aşağı düşmesine izin vermez. Ağacın dalları için tehlikeye neden olmayacak miktarda karın dalların üzerinde kalmasına izin verir. Bu da başka bir amaca hizmet eder. Ağacın üzerinde az miktarda tutulan kar ağacı soğuktan koruyan bir örtü görevi görür ve yapraklardan nemin dışarı çıkmasını azaltarak su kaybını önler.
Buraya kadar verdiğimiz örneklerden de anlaşılacağı gibi, her türlü ortamın o ortama özgü bitkileri vardır. Bu bitkiler sahip oldukları özellikler sayesinde aşırı soğuktan veya aşırı sıcaktan korunur, nemliden kuruya kadar her ortamda yaşayabilirler. Ortamın özelliklerine göre tasarlanmış bu bitkilerin kullandıkları yöntemlerin her biri üstün bir tasarım örneği olduğu gibi, birinin kullandığı yöntem diğerine benzememektedir. Örneğin kaktüs kendini dikenlerle savunurken, taş bitkisi kamuflaj tekniğini kullanır. Kozalaklılar yaprak dökmezken, diğer ağaçlar kışın yapraklarını dökerler. Bu örnekleri artırmak mümkündür. Ancak şunu unutmamak gerekir ki, yeryüzünde birbirinden farklı 500 binden fazla bitki vardır. Bunların hemen hemen yarısı çiçekli bitkidir, bu bitkilerin şimdiye kadar %10'u bile detaylı olarak incelenememiştir. İncelenen bitkilerin ise her biri kendine has özelliklere, hayranlık uyandıran tasarımlara ve hayatta kalma yöntemlerine sahiptirler. Bitkiler bu çeşitlilik ve farklı yapılarıyla Yaratıcıları olan Allah'ın sonsuz ilim ve sanatını sergilerler. Bir ayette şöyle buyrulur.
O, gökleri dayanak olmaksızın yaratmıştır, bunu görmektesiniz. Arzda da, sizi sarsıntıya uğratır diye sarsılmaz dağlar bıraktı ve orada her canlıdan türetip yayıverdi. Biz gökten su indirdik, böylelikle orada her güzel olan çiftten bir bitki bitirdik. (Lokman Suresi, 10)


Sarılan Yapraklar

Sarılıcı ve tırmanıcı bitki türleri insanda hayranlık uyandıran pek çok özellikle donatılmışlardır. Özellikle, sarmaşıkların enerjilerinin bir kısmını kullanarak oluşturdukları "tendril" (sülük) adı verilen yaprak türü, tam bir tasarım harikasıdır.
Tendriller, dokunmaya karşı hassas yapraklardır. Bir kol gibi ileriye uzanabilen bu yapraklar, adeta bitkiye destek olabilecek bir nesne ararlar. Böyle bir nesneye rastladıklarında ise dokunarak onu analiz eder ve eğer uygunsa oraya dolanmaya başlarlar.
Bu noktada biraz durup düşünmek gerekir. Bir bitki veya bir hayvan için, biyoloji, zooloji veya botanik kitaplarında "analiz eder", "inceler" "anlar" gibi birçok ifade kullanılır. Ancak, hayvanlar ve bitkiler, hiçbir şuura sahip olmayan, analiz yapma, anlama, karar alma, uygulama, irade gösterme gibi özelliklerden tamamen yoksun varlıklardır. Öyle ise, bir bitki, bir nesneyi nasıl analiz eder? Dolanması için uygun olup olmadığını hangi şuur, akıl ve bilgi ile anlar? Bu analizi yapan, bitkinin hücreleridir. Gözle görülmeyecek kadar küçük, eli, beyni, bilgisi ve aklı olmayan hücreler, analiz yapma ihtiyacını nereden hissetmekte, sonra da bu analizi hangi aletlerle, hangi ölçümleri kullanarak yapmaktadırlar? Bu soruların her biri, her canlının Allah tarafından gerekli özelliklerle yaratıldığını ve Allah'ın emrine uyarak yaşadığını gösterir.
Tendrillerin bu hayret verici işlemi niçin yaptıkları, kısa bir süre önce kısmen de olsa anlaşılmıştır. Çoğunlukla sık ağaçlı ormanlarda bulunan tedrillerin tırmanma nedeni, güneş ışığına ulaşmaktır. Böylece, fotosentez yapabilir ve daha çok büyüyebilirler. Büyüdükçe çevrelerindeki bitkilerden daha yükseğe çıkarlar ve böylece de ışığı daha fazla alırlar. Bu hem enerji kazanımlarını artırır hem de çiçeklerinin daha müsait bir çevrede döllenmesini sağlar.18
Bu bitkilerin farklı tırmanma metodları ve bu iş için özel yaratılmış organları vardır. Bir sarmaşığın en basit tırmanma yöntemi, kendisini bir desteğin etrafında sarmaktır. Bu destek, başka bir bitki veya katı bir cisim olabilir. İçindeki farklı kimyasalların ve organik yapıların ortaya çıkardığı mekanizmalar, bitkinin ışığı, yerçekimini, dokunmayı ve ısıyı hissetmesini sağlar. Bitki bunlara yine aynı mekanizma sayesinde hareketleriyle tepki verir. Bu tepki genel olarak bitkinin büyümesidir. Bir filizin büyürken dairesel kavislerle hareket etmesi de bu dokunuşların etkisiyle oluşur. Daire çizen filiz, bir desteğe dokunur dokunmaz, temas ettiği yüzeyin tam tersine doğru bir büyüme hamlesi yapar. Çünkü, filizin temas ettiği yüzey, onun içe doğru bükülmesine yol açar. Böylece filiz desteğin etrafında dolanarak büyümeye başlar. Ayrıca, yüzeyle ilk temas ettiği köşeden daha uzun ve daha hızlı bir şekilde büyür. Büyüme o kadar hızlıdır ki, birkaç saatlik bir süreden sonra gözle bile fark edilebilir hale gelir.
Bitkinin kullandığı yöntem oldukça akılcıdır. Eğer bitki ağacın etrafına sarılmadan, doğrudan yukarı doğru boy atsa, uzunluğu birkaç metreye ulaşmadan gövdesi ağırlığına dayanamayacak ve kırılacaktır. Daha yükseğe ulaşmanın ve ağırlığını destek aldığı nesneye taşıtmanın, bunu yaparken de kırılmamanın tek yolu, destek alınan nesnenin etrafına sarılarak büyümektir. Peki bitki bunu nereden bilmektedir? Dahası, dünyanın her yanında, milyonlarca yıldır bu bitkiler aynı şekilde büyümekte, nereye bırakılırlarsa bırakılsınlar, mutlaka bir yere kendilerini sarmaktadırlar. Bitkinin her seferinde bu en ideal yolu kullanması şüphesiz bitkinin yaratılışından sahip olduğu mucizevi bir özelliktir.
Sarmaşıkların, bir cismin çevresine kendilerini dolayarak büyümeleri, biraz hızlandırılmış olarak izlendiğinde, çok şuurlu, ne yaptığını bilen bir davranışla karşılaşılır. Sarmaşıklar bu özellikleri nedeniyle, eski zamanlardan beri birçok öykü ve efsaneye konu olmuşlardır. İnsanları bu kadar etkileyen, toprakta sabit duran, görmeyen, işitmeyen bir bitkinin adeta çevresini görüyormuş ve duyuyormuş gibi kollarını uzatarak etrafındaki nesneleri yoklaması, onları tanıması ve uygun olanları kendisi için kullanmasıdır. Bütün bu şuur içeren işlemleri bir bitkinin yapamayacağını düşünen insanlar, bu bitkinin içinde onu kontrol eden akıllı ve şuurlu bir yaratığın varlığına inanmışlar, sarmaşıklar üzerine hikayeler uydurmuşlardır. Gerçekten de, şuursuz bir bitkinin, çevresindeki varlıkları sanki görebiliyormuş gibi incelemesi, sonra bir tanesinde karar kılarak ona sarılması hayranlık ve hayret uyandırmaktadır. Bu bitkilerin dokunma hisleri o kadar güçlüdür ki, bir tür yabani kabak türü olan Bryonia dioica'yı inceleyen araştırmacılar, bu bitkinin yüzeyinde bulunan dokunmaya karşı duyarlı küçük yapıların insanın parmak ucundan daha hassas olduğunu keşfetmişlerdir.19 O halde üzerinde düşünülmesi gereken soru şudur: Bu şuurlu davranışları, gözü, kulağı hatta bir beyni bile olmayan bitkiye yaptıran kimdir? Cevap açıktır: Bitkiyi tasarlayan, onun bütün hareketlerini ve mekanizmalarını düzenleyen, o bitkiyi sonsuz bir ilimle yaratmış olan Allah'tır.


Etobur Yapraklar

Etobur yapraklar, en ilginç özelliklere sahip olan yapraklardır. Kese, huni, ibrik gibi şekillere sahip olan bu yapraklar böcek yakalayabilir, böceklere yuva olabilir veya su depolayabilirler.
Etobur bitki, böcek gibi canlıları çeken, yakalayan, öldüren ve daha sonra da avını parçalayarak faydalı bölümlerini sindiren bitkidir. Birçok bitki bu aşamaların bazılarını uygular. Mesela bazı çiçekler böcek, kuş gibi dölleyicileri kendilerine çekerler. Orkide, su zambakları gibi bazı bitkiler ise böcek gibi dölleyicileri kısa süre için tuzağa düşürürler ama bu bitkilerin hiçbiri bu hayvanları yemezler. Bu böcekleri sadece döllenmek için kullanırlar. Kısacası bunlar etobur bitki değildir; çünkü etobur bitki olmak için bitkilerin bu canlıları sindirmeleri gerekmektedir.
Etobur bitkiler, avlanırken yapraklarını kullanırlar. Bunlardan en ilginç olanı Dischidia rafflesiana isimli bitkidir. Bu bitki tam olarak etobur sayılmasa da, etobur bitkilerin uyguladığı yöntemlerden bir kısmını uygular. İbrik şeklindeki yapraklarıyla karıncalara yuva işlevi gören bu bitki çok kalabalık koloniler halinde yaşayan karıncaları yemez. Ancak onları besler ve karıncaların artıklarından elde ettiği nitrojeni besin olarak kullanır. Karıncalar ise hem hazır bir yuvayı kullanmış hem de bitkiye zarar veren canlıları bertaraf etmiş olurlar. Ayrıca Dischidia'nın keselerinde biriktirdiği su, kesenin iç yüzeyinde bulunan ek kökler tarafından emilerek kullanılır hale gelir.20
Etobur bitkilerden olan Pinguicula (yağ çanağı) gibi bitkiler yapışkan ve kaygan yüzeyli yapraklarıyla üzerlerine konan böcekleri ipliksi bir salgının içine alırlar. Bu salgının içinde bulunan protaz, lipaz ve asit fosfataz gibi enzimler böceği parçalayarak sindirilmesini sağlarlar.21
Aktif yapışkan yapraklara sahip olan Drosera, uçları yapışkan ve kırmızı bir tür pigment içeren uzun ve kısa tüyleriyle avlanır. Yaprağın ortasında bulunan kısa tüylere dokunan böcek, bu sinyalin uzun tüylere iletilmesiyle tuzağa düşmüş olur. Yaprak, bir elin avuç içine kapanması gibi katlanarak böceği sindirir.
Bütün bitkiler belirli oranda hareket ederler; ancak etobur bitkilerin hareketleri oldukça hızlı ve etkilidir. Bitkilerin kas sistemleri olmadığına göre bunu nasıl başarmaktadırlar? Bu iş için etobur bitkiler iki ayrı mekanizma kullanırlar. Birincisi, Venüs bitkisinde görülen ve su basıncının değişmesiyle harekete geçen mekanizmadır. Yaprak üzerindeki tüylere dokununca harekete geçen bu sistemde, iç duvarda bulunan hücreler suyu dış hücrelere transfer ederler. Bu, yaprağın bir anda kapanmasını sağlar. İkinci tür hareket ise, hücre gelişimiyle desteklenmiştir.
Güneş gülü Sundew'in dokunaçları ise, ava doğru bükülür; çünkü dokunaçların bir tarafındaki hücreler, dokunacın diğer tarafındaki hücrelerden daha fazla büyümüşlerdir. Bu tuzakta çiçeğin üzerindeki duyargaların ucundan salgılanan maddelerin yaydıkları kokuyla dokungaçlara gelen böcek buradaki yapışkan maddeye yakalanır. Bu andan itibaren tuzak harekete geçirilmiş olur, ortadaki kısa duyargaların dış tarafında bulunan daha uzun duyargalar bir kafes gibi böceğin üzerine kapanırlar. Böcek bu tuzağın içinde çeşitli enzimler kullanılarak sindirilir.
Bir yaprağın böcek yakalamak için özel bir tuzak hazırlamasının ne anlama geldiğini bir an için düşünelim. Herşeyden önce bir bitki, neden alışılmışın dışında bir beslenme türü geliştirerek, böcekleri avlama ihtiyacı hissetmiş olabilir?
Evrimciler, etobur bitkilerin de diğerleri gibi tesadüfen gelişen doğa olayları sonucunda böyle bir özellik kazandığını öne sürerler. Ancak, bir bitkiye nasıl bir olay tesadüf etmelidir ki, bu bitki çok hızlı hareket eden yapraklara, böcekleri sindirebilen enzimlere sahip olsun? Dahası, her etobur bitki, içinde bulunduğu koşullara uygun olan farklı özelliklere sahiptir. Bunun için örneğin Drosera bitkisinin usta bir avcı olmadan önce belirli aşamalardan geçmesi gerekir. İlk önce etrafta dolaşan böcekleri, sinekleri tespit etmeli ve bu canlıları özel bir laboratuvar testinden geçirdikten sonra, bunların zayıf yönlerini, hangi kokulardan ve renklerden etkilendiklerini, anatomik yapılarını ve onları nasıl sindirebileceğini kararlaştırmalıdır. Daha sonra, bu böceklerin dolaştıkları bölgeyle ilgili bir keşif yapıp nerede yerleşmesi gerektiğini tespit etmelidir. Ancak bundan sonra daha da zor bir aşamayla karşılaşır. Kendi kimyasal ve biyolojik yapısını elde ettiği verilere göre değiştirmesi gerekmektedir. Yani bitkinin hem rengini değiştirecek kimyasal pigmentlere, hem kokusunu değiştirecek salgı bezlerine ihtiyacı vardır. Ayrıca sineğin içine düştüğü zaman kurtulamayacağı bir tuzak tasarlamalıdır. Bunun için gerekli mühendislik çalışmalarını yaptıktan sonra yapışkan tüyler, kaygan bir yüzey ve dibi su dolu bir çanak, bu tuzağı tamamlayan bir kapak ve tuzağı harekete geçiren anahtarları tek tek tasarlamalıdır. Bu arada böceği nasıl sindireceğini de düşünmeli ve bu iş için gerekli enzimleri kullanmaya karar vermelidir.
Yukarıdaki senaryonun akıl ve mantık dışı olduğunu her akıl sahibi insan bilir. Tüm bitkiler gibi etobur bitkiler de ne bir beyne, ne göze, ne de akla ve şuura sahiptir. Böyle karmaşık bir tasarım, değil bir bitki, konunun uzmanı olan bütün bilim adamlarının biraraya gelmesiyle bile meydana getirilemez. Bu üstün tasarım çok açıkça anlaşılacağı gibi, örneksiz yaratan, sonsuz bir ilim ve güç sahibi olan Allah tarafından var edilmiştir. Yeryüzündeki en akıllı canlı olan insan bile örneksiz hiçbir şey yaratamaz. Ressam gördüklerini çizerken, bilim adamı da ancak var olanı inceler. Oysa, sonsuz gücün sahibi olan Rabbimiz, hiçbir örnek edinmeksizin yaratandır. Bu gerçek Kuran'da şöyle belirtilmiştir:

Gökleri ve yeri (bir örnek edinmeksizin) yaratandır. O, bir işin olmasına karar verirse, ona yalnızca "OL" der, o da hemen oluverir. (Bakara Suresi, 117)


Yediğimiz Yapraklar

İnsanların birçoğunun zannettiği gibi yaprakların tek işlevi yaşam için gerekli olan oksijeni sağlamak değildir. Yediğimiz, içtiğimiz ve kokladığımız şeylerin önemli bir bölümü yapraklardan oluşur. Yapraklarını yediğimiz sebzeler, çeşit çeşit koku ve tatlarıyla içtiğimiz çaylar günlük beslenmemizin en önemli bölümlerinden birini oluştururlar. Birer besin kaynağı olmasının yanında sebzeler, C, A, tiamin, niasin, folik asit gibi vitaminlerle; kalsiyum, fosfor, demir, sodyum, potasyum gibi minerallerle; çözünür-çözünmez liflerle zenginleşmiş içeriği, az yağlı ve az kalorili olma özelliğiyle insanın sağlıklı beslenmesi için özel olarak yaratılmış nimetlerdir. Doktorların sebze ve meyve tüketimini sağlık için zorunlu görmelerinin sebebi de budur. Allah'ın insanlar için yarattığı bir nimet olarak, doğada bulunan birçok bitki, baş ağrısından kansere kadar bütün hastalıkların tedavisinde kullanılan maddeleri içermektedir. İnsan vücudunda yapıtaşı olarak görev yapan 20 çeşit aminoasit vardır. Vücut bu 20 aminoasidin 8 tanesini sentezleyemez; bu yüzden bu maddeler besinler yoluyla vücuda alınmalıdırlar. Bütün sebzeler bu aminoasitleri belirli miktarlarda karşılar. Bu bitkiler insan vücudu için özel olarak hazırlanmış yapılarıyla, doğru tüketildiği takdirde hiçbir yan etkiye ve hiçbir zarara yol açmadan, sadece insana sağlık kazandıracak ve gereksinimlerini giderecek özelliklere sahiptirler.
Her gün yediğimiz, sofralarımızı süsleyen, görünümleriyle ve tatlarıyla hoşumuza giden yapraklar gerek biçimleri gerekse içerikleriyle özel tasarlanmışlardır. Örneğin lahana (Brassica oleracea) türü sebzelerdeki kat kat etli yapraklar, sebzenin tazeliğini uzun süre korumasını sağlar. Dış yapraklar bozulsa bile içteki yaprakların bozulması uzun zaman alır. Kalsiyum, C, B1, B2, B12 vitaminleri bu tür bitkilerde bol miktarda bulunur. Ayrıca, karbonhidrat, selüloz, protein, yararlı tuzlar gibi insan vücudu için gerekli maddelere sahip olmalarına rağmen kalorileri çok düşüktür.22
Yediğimiz yapraklara bir diğer örnek de ıspanaktır. Ispanak A, B1, B2, C, K vitaminleri, proteinler, selüloz gibi maddelerin yanı sıra, bol miktarda demir bulundurur.23 Pazı, semizotu, marul, enginar, karnıbahar, aklınıza hangi sebze gelirse gelsin, hepsi yaprak şekilleri, kolay yetişme ve besin muhafaza etme özellikleriyle birer tasarım harikasıdır. Ayrıca bunların tümü besleyici-doyurucu özellikleri ve tatlarıyla insan için özel olarak yaratılmış birer nimettir.
Yediğimiz sebzelerin yanında, içtiğimiz ve yemeklerimize tat vermek için kullandığımız yapraklar da vardır. Bu küçük yaprakların büyük bir kısmı ise Allah'ın doğada bizim için yarattığı özel ilaçlar olarak görev yaparlar. Örneğin toprak olan her yerde yetişen, vitamin, özellikle de C vitamini bakımından en zengin bitki olan maydanoz bunlardan biridir. Kekik de çok sık kullandığımız bir yapraktır. Eski zamanlardan beri bulaşıcı hastalıklara, veba salgınlarına karşı en çok bu kokulu bitkiler kullanılırdı. Bugün yapılan araştırmalarla kekiğin güçlü bir antiseptik olduğu anlaşılmıştır. Kekik yağı, çok güçlü bir mikrop öldürücüdür. Timol adı verilen kekik yağı ilaç yapımında geniş çaplı olarak kullanılmaktadır. Diğer besin özelliklerinin yanında grip, nezle, anjin gibi hastalık durumlarında, iştah açıcı olarak zayıf çocukların tedavisinde ve hastalıktan kalkmış olanların canlanmasında kekik kullanılır.24
Defne, fesleğen, tarhun, dereotu, mercanköşk, urum, nane gibi şifalı bitkilerin sayısı o kadar fazladır ki, bu konuda yazılmış ansiklopedilerde binden fazla bitki çeşidinden ve bitkilerin üstün özelliklerinden bahsedilmektedir. Günümüzde yeniden ele alınan bu bitkilerle kanserden romatizmaya, cilt problemlerinden ses kısıklığına kadar bütün hastalıklara çare aranmaktadır.
Çay olarak içtiğimiz çay bitkisi, adaçayı, papatya, bergamot gibi yapraklar da hem tatları hem de tedavi edici özellikleriyle bu şifalı bitkilerin arasında yer alırlar. Örneğin adaçayına Latince'de Salvia salvatrix yani "can kurtaran ot" adı verilmiştir. Antiseptik olarak kullanılan bu bitki, gece terlemelerini, gribi, asabiyeti, gerginliği önleyici, yatıştırıcı özelliklere sahiptir.25
Bitkilerin bu şifa verici özellikleri, onların insanlar için Allah tarafından birer nimet olarak yaratıldıklarının en açık delilidir. Bir besinin yenilebilir olması, kendisinin kullanmadığı ve sadece insana yarayan maddeleri depolaması, dünyadaki milyarlarca insanı besleyecek kadar bol, yaygın ve kolay olarak yetişmesi, insanın bu besinleri elde etmek için fazla bir çaba göstermemesi, bitkilerin birbirleriyle karışarak sadece insan için anlamı olan tatları oluşturmaları Allah'ın büyük mucizelerindendir. Allah Kuran'da bu nimetini düşünen insanlara şöyle bildirmiştir:

Sizi yaratan O'dur; buna rağmen sizden kiminiz kafirdir, kiminiz mü'min, Allah, yaptıklarınızı görendir. Gökleri ve yeri hak olmak üzere yarattı ve size düzenli bir biçim (suret) verdi; suretlerinizi de güzel yaptı. Dönüş O'nadır. Göklerde ve yerde olanların tümünü bilir; sizin saklı tuttuklarınızı da, açığa vurduklarınızı da bilir. Allah, sinelerin özünde saklı duranı bilendir. (Tegabün Suresi, 2-4)


Kokladığımız Yapraklar

Güzel kokular nereden geliyor? Yemekteki baharatın, bahçedeki çiçeklerin, meyvelerin, sebzelerin, binbir çeşit otun kokularının kaynağı nedir? Koku; güzel hisler uyandırmak, rahatlatmak, iştah açmak gibi insan ruhunda karşılık bulan türlü etkilere sahip bir mucizedir. İnsan için büyük bir nimet olarak yaratılan kokular karmaşık kimyasal bileşiklerdir. Her koku çok hassas miktarlarla biraraya gelmiş elementlerden oluşur. Bitkilere koku veren maddelere "uçucu yağlar" adı verilir ve bu yağlar, bitkinin ismiyle adlandırılır; mesela gül yağı veya kekik yağı gibi. Genç bitkiler, yaşlı bitkilerden daha fazla yağ üretirler; yaşlı bitkiler ise, daha reçineli ve koyu yağlara sahiptirler. Çünkü hafif sıvılar düşük bir sıcaklıkta bile buharlaştıktan sonra geriye kalın ve kolay kolay buharlaşmayan yağlar kalır.
Araştırmacıların yaptıkları çalışmalarda, bu yağların bitkideki işlevi tam olarak anlaşılamamıştır. Ancak böcekleri çekmek için kullanıldıkları genel olarak kabul edilmektedir. Parfümeri, kozmetik ürünleri, sabun, deterjan gibi ürünlerde; yemek, tatlı yapımında bitki yağları kullanılır.
Yağlar bitkinin yeşil bölümlerinde oluşur ve bitkinin olgunlaşmasıyla diğer dokulara, özellikle de çiçek filizlerine taşınırlar. Bu kokuların nasıl oluştuğunu incelediğimizde, karşı karşıya kaldığımız sistemin kompleks ve hassas yapısı karşısında hayrete düşeriz. Yapılan araştırmalarda bitkilerin koku üretiminin bitkinin türüne, mevsime, ışık durumuna ve ısıya göre değiştiği ve bitkilerin bu üretim için 100'e yakın farklı kimyasal bileşik kullandıkları tespit edilmiştir. Tespit edilen bileşiklerin yanında, daha incelenmemiş olan bitkilerin de kendilerine has bileşikleri olduğu düşünülmektedir.
Bu bileşikler üretilirken bitkinin içinde ancak kimya laboratuvarlarında rastlanabilecek bir çalışma yapılır. Bitki özüyle, bitkinin kabuk kısmına yakın olan salgı bezlerine çeşitli kimyasal maddeler taşınır. Bu maddeler, henüz tam olarak anlaşılamayan bir mekanizmayla, salgı bezlerindeki enzimler tarafından, belirli miktarlarda biraraya getirilir ve ortaya çok farklı kokular çıkar. Yani salgı bezleri aynı bir kimyager gibi çalışarak, farklı elementleri birbirine karıştırırlar. Ve bu kimyasal karışımları ile gülün, ıhlamurun, hanımelinin mükemmel kokusunu meydana getirirler. Günümüzde, gelişmiş laboratuvarlarda parfüm, deodorant, sabun kokusu üreten kimya mühendisleri ise bu salgı bezlerinin yaptıklarını taklit ederek, güzel kokular üretmeye çalışırlar. Bu çok büyük bir mucizedir. Akıl, bilinç, eğitim ve teknoloji sahibi insan, gözle görülemeyecek kadar küçük, cansız ve şuursuz atomlardan oluşan bir salgı bezini taklit ederek, ortaya bir güzellik çıkarmaya çalışmaktadır. Bitki ile karşılaştırıldığında sahip olduğu tüm üstünlüklerine rağmen, insan üretimi olan hiçbir koku, aslı ile aynı güzelliğe ve kaliteye sahip olamamakta, en fazla "iyi bir taklit" olmaktan öteye gidememektedir.
Bu kokular daha sonra yine salgı dokularına bağlı kanallarla yaprak yüzeyinden uçarak havaya karışır. Gül, zambak, leylak çiçeklerinin yapraklarının üst kısmında bu iş için özel olarak görev almış salgı hücreleri vardır. Lavantada bu hücreler bitkinin bütün bölümlerine yayılmıştır. Salgı hücreleri kokuyu yaymak için çok ince ve hassas tüyler kullanırlar. Bu tüylerin ucundaki hücreler yağ-reçine karışımı uçucu sıvılar salgılarlar. Bu sisteme iç salgı hücrelerini, salgı ceplerini ve salgı kanallarını da ekleyince karşımıza, küçücük yaprağa sığdırılmış hayranlık uyandırıcı bir tasarım çıkar. Bitkinin kokusunu çevresine yayması, insanların çok büyük zevk aldıkları bir nimettir. Bir bahçeye girdiğinizde, içinize çektiğiniz mis gibi koku, yapraklarda bulunan bu kusursuz tasarım sayesinde size ulaşmaktadır. Eğer, yapraklardaki bu düzen olmasaydı, çiçekler kokularını çevrelerine yaymayacaklar, sadece üzerlerinde bulunduracaklardı. Peki, bitkilere, kokularını çevrelerine yaymalarını bildiren ve onları bu şekilde tasarlayan güç, akıl ve sanat kime aittir? Bu üstünlüklerin hepsi, sonsuz merhamet ve şefkat sahibi Rabbimizin eseridir.
Koku üretiminde çok ince hesaplar söz konusudur. Bu işlem sırasında son derece kompleks yapılı moleküller üretilir. Örneğin İspanyol yasemini (Jasminum grandiflorum), kokusunu oluşturmak için 10 farklı bileşikten faydalanır. Gül ailesi de koku üretimi için 3 ile 10 arası miktarda bileşik kullanmaktadır. Beyaz frezya (Freesia alba) 10, nilüfer (Nelumbium nucifera) 6 bileşik kullanan bitkilerdendir. Temmuz ayında bütün bahçelerde farklı kokusuyla çiçekler açan hanımeli de (Lonicera americana) 6 farklı kimyasal bileşik kullanır. Aşağıdaki tabloya baktığımızda okumakta bile zorlandığımız bu kimyasal bileşikler, bitki tarafından ancak mikroskopla görülebilecek bir alanda üretildiği gibi, her bitki ayrı bir koku ve kimyasal formül kullanır. Ancak dünyanın neresine gidersek gidelim, aynı bitkiler ilk yaratıldıkları günden beri aynı kokuları üretirler. Yani dünyanın bir ucundaki gül ile diğer ucundaki gül aynı kokuya sahiptir.
Bitkilerin, bazı atomları biraraya getirip, bileşikler meydana getirmeleri ve bunun sonucunda koku üretmeleri çok büyük bir mucizedir. Ve dünyanın dört bir yanında, örneğin güller aynı atomları biraraya getirerek aynı kokuyu üretirler. Oluşturdukları bileşikte en küçük bir değişiklik, örneğin bir atomun sayısındaki farklılık kokuyu tamamen değiştirebilir veya tamamen ortadan kaldırabilir. Ancak, hiçbir zaman formülde bir hata yapmazlar. Bitkilere, ancak kimya mühendislerinin sahip olabileceği bu şuuru, aklı ve bilgiyi veren nedir? Dünyanın her yerinde, bitkiler bu formüllere tesadüfen sahip olmuş olabilirler mi?
Bitkilerin oluşan kokunun güzel mi, etkileyici mi olduğunu anlayacak bir burunları veya idrak merkezleri yoktur. Hele milimetrenin binde biri gibi bir alanda koku üretecek bir kimya laboratuvarı kuracak ne akılları ne de imkanları vardır. Kokuyu meydana getiren bu kimyasal bileşikleri üretenler bitkinin hücreleridir. Yani bazı şuursuz atomlar bir kimyager gibi yine şuursuz olan başka atomları kullanarak dünyanın en güzel kokularını üretmektedirler. Kendileri dışındaki diğer atomların özelliklerini, hangi miktarlarda biraraya gelmeleri gerektiğini, sonuçta nasıl bir koku elde edeceklerini bilen bu atomlar, kokunun yayılması için gerekli olan çevre koşullarını ve etraftaki hangi canlıları bu koku ile etkileyebileceklerini de bilmektedirler. Hatta bu atomlar kokuyla etkilemeyi düşündükleri canlının bütün kimyasal yapısını da bilmekte, böylece onun koku algısına uygun bileşikler hazırlamaktadırlar.
Bitkilerin büyük bir kısmı bu koku laboratuvarlarına sahiptirler. Dünyadaki bitkilerin içinde bu şekilde çalışan milyonlarca koku laboratuvarı olmasına rağmen, bu atomlar kimyasal bileşikleri hazırlarken hiç hata yapmazlar. Bu yüzden, dünyanın her yerinde aynı çiçekten aynı kokuyu almak mümkün olur. Böyle mükemmel kokuların belirli formüllere göre, bilinçsiz atomlar tarafından karmaşık işlemlerle imal edilmesini, bu işlem için kurulmuş kimyasal tesisleri, kokunun estetik açıdan taşıdığı anlamı tesadüfle açıklamak mümkün değildir. Koku ve onu imal eden sistemler Allah tarafından özel olarak tasarlanmış ve yaratılmıştır. Binbir çeşit kokunun yanı sıra, kokuyu algılayan canlılar ve onların algılama sistemleri de birbirleriyle uyum içinde yaratılmışlardır. Muz, portakal, elma gibi sayısız meyvanın, gül, lale, gardenya, iğde gibi çiçeklerin bizi etkileyen kokuları işte bu mucizenin ürünüdür.
Bitkinin yaprak, çiçek, gövde, kök, rizom, meyve kabuğu gibi her parçasında bulunan bu kokular, insan ruhunu etkilediği gibi, döllenme ve bitki savunması için böcekleri etkilemek, sıcaklık kontrolü yaparak su kaybını önlemek gibi görevlere de sahiptir.
Sonsuz bir ilim ve sanatla yaratılan kokuların diğer bir yönü de insan vücudunda bulduğu karşılıktır. Güzel kokular, insanın koku algısıyla da uyum içinde yaratılmıştır.


Koku ve hafıza

Kokuların insan hafızasındaki anıları harekete geçirdiği herkesçe bilinir ve sık sık yaşanır. İnsan, bir şeyi kokladığında, kokuya ait moleküller burna girer. Bitkilerin koku molekülleri uçucudur, bu yüzden çok düşük bir sıcaklıkta dahi gaz haline dönüşerek havada yayılırlar. Çok hafif bir rüzgar bu kokuları burna taşır. Burnun arka kısmına ulaşan koku molekülleri nemli bir dokuyla karşılaşırlar. Bu doku nöron adı verilen ve koku algılayan 5 milyon adet hücreden oluşur. Bu 5 milyon hücreden her biri ucunda reseptörler olan püskülümsü uzantıları dalgalandırarak koku moleküllerini yakalar. Bu duyargaların diğer ucu hücrenin içine yapışıktır. Koku molekülü bu tuzağa yakalandığında seri bir sinyal hücre içinde dolaşarak beynin alt tarafındaki koklama merkezine gerekli mesajı ulaştırır. Bütün bu işlemler bir saniyeden çok daha kısa bir zamanda gerçekleşir. Daha sonra sinyaller buradan çıkarak beynin duygu ve motivasyonla ilgili olduğu sanılan bölümüne (limbik sistem) giderler.26
Bu sinyal sonucunda koklanılan kokunun neye ait olduğu, güzel mi yoksa çirkin mi olduğu anlaşılır. Güzel kokular bir hoşluk duygusuna yol açar. Eğer tanıdık bir kokuyla karşılaşıldıysa, o kokunun kaynağıyla ile ilgili hafıza bilgileri yeniden canlanır. Mesela limon kokusu aldığımızda aklımıza bir limonata gelebilir, ya da baharat kokuları aldığımızda iştah açıcı yemekler aklımıza gelir. Veya bir çiçeğin kokusu, insanın yıllar önce başka bir şehirde aynı çiçeği kokladığı bir bahçeyi hatırlatabilir. Bu ince tasarım karşısında ortaya çıkan gerçek şudur: Bitkiler kimyadan, kimyasal bileşiklerin yol açacağı sonuçlardan haberdar değillerdir. Bu yüzden koku gibi kimyasal bir karışımı üretmeye ve bu karışımı üretecek tesislerin inşasına karar verebilecek imkanları olmadığı gibi bu kokuyu algılayacak organlara, bir kokunun güzel mi ya da kötü mü olduğuna karar verecek sinirlere de sahip değillerdir. İnsandaki koku algısının nasıl çalıştığını da bilmezler. Çok açıktır ki her biri, tüm varlıkları birbiriyle mükemmel bir uyum içinde yaratan, üstün ilim ve sanat sahibi olan Allah'ın birer eseridir. Bütün kokuları ve onları algılayan organları yaratan Allah, insan ruhunu da bu kokulardan etkilenecek şekilde yaratmıştır.



Yapraklar Ve Altın Oran

Çevremizdeki bitkilere, ağaçlara baktığımızda dalların birçok yaprakla kaplı olduğunu görürüz. Uzaktan baktığımızda, dalların ve yaprakların gelişigüzel, dağınık bir şekilde dizilmiş olduklarını düşünebiliriz. Oysa, her ağaçta, hangi dalın nereden çıkacağı ve yaprakların dal çevresinde dizilişleri, hatta çiçeklerin simetrik şekilleri dahi belirli sabit kurallar ve mucizevi ölçülerle belirlenmiştir. Bitkiler ilk yaratıldıkları günden beri bu matematik kurallarına harfi harfine uyarlar. Yani hiçbir yaprak veya hiçbir çiçek tesadüfen ortaya çıkmaz. Bir ağaçta kaç dal olacağı, dalların nereden çıkacağı, bir dal üzerinde kaç yaprak olacağı ve bu yaprakların hangi düzenlemeyle yerleşeceği önceden bellidir. Ayrıca her bitkinin kendine özgü dallanma ve yaprak diziliş kuralları vardır. Bilim adamları bitkileri sadece bu dizilişlerine göre tanımlayıp sınıflandırabilmektedirler. Olağanüstü olan ise, örneğin Çin'deki bir kavak ağacı ile İngiltere'deki bir kavak ağacının aynı ölçü ve kurallardan haberdar olmaları, aynı oranları uygulamalarıdır. Her bitkiyi kendine özgü matematiksel hesaplarla en estetik şekilde yaratan, tesadüfler olamaz elbette. Tüm bu estetiğin ve kusursuz hesaplamalarla yapılan tasarımın yaratıcısı sonsuz ilim sahibi olan Allah'tır. Kuran'da da bildirildiği gibi;

Göklerin ve yerin mülkü O'nundur; çocuk edinmemiştir. O'na mülkünde ortak yoktur, herşeyi yaratmış, ona bir düzen vermiş, belli bir ölçüyle takdir etmiştir. (Furkan Suresi, 2)

Bitki türüne göre değişen bu diziliş şekilleri dairesel veya sarmal yapı şeklindedir. Bu özel dizilişin en önemli sonuçlarından biri yaprakların bir diğerini gölgelemeyecek şekilde yerleşmiş olmalarıdır. Botanikte "yaprak diverjansı" olarak tanımlanan bu oranlara göre bitkilerde yaprakların gövde etrafına dizilişlerindeki düzen belirli sayılarla belirlenmiştir. Bu diziliş son derece kompleks bir hesaba dayanır. Bir yapraktan başlayıp, gövde etrafında dönerek aynı hizadaki diğer yaprağa rastlayıncaya kadar yapmamız gereken tur sayısı (N) ile, bu turlar arasında karşılaştığımız yaprak sayılarını (P), sırasıyla N ve P ile gösterirsek, P/N oranı, bitkilerde "yaprak diverjansı" olarak adlandırılır. Bu oranlar çayır bitkilerinde (otlarda) 1/2, bataklık bitkilerinde 1/3, meyve ağaçlarında (elma) 2/5, muz türlerinde 3/8, soğangillerde 5/13'tür.27
Aynı türe ait her ağacın bu orandan haberdar olup, kendi cinsi için belirlenmiş orana uyması büyük bir mucizedir. Örneğin bir muz ağacı bu oranı nereden bilir ve bu orana nasıl uyabilir? Bu hesaba göre, her muz ağacının çevresinde bir yapraktan başlayıp 8 kere tur attığınızda, aynı hizadaki diğer yaprağa rastlayacaksınız. Ve bu turlar arasında 3 yaprakla karşılaşacaksınız. Güney Afrika'dan Latin Amerika'ya kadar nereye giderseniz gidin, bu oran şaşmayacaktır. Sadece böyle bir yaprak diziliş oranının olması dahi canlıların tesadüfen oluşmadıklarını, kusursuz ve son derece kompleks bir oran, hesap, plan ve tasarımla yaratıldıklarını gösteren önemli bir delildir. Canlıların genetik yapılarına böyle bir oranı kodlayan, onları bu bilgi ve özellikle yaratan üstün bir ilim ve akıl sahibi olan Allah'tır.
Ağaç formları içinde en çok rastlanan modellerden biri, gövdenin birbirine tam zıt yönünden çıkan yaprak ve dal çiftleridir. Tohum açıldıktan sonra iki tane yaprak açar, bu yapraklar 180 derecelik bir açıyla karşılıklı olarak dizilmişlerdir. İlk iki yapraktan sonra gelişen diğer iki yaprak ise maksimum dağılımı sağlamak için zıt tarafta, birinci çifte sağdan açı yaparak gelişir. Böyle bir durumda bir dalın etrafında 90 derecelik açılara sahip dört adet yaprak dizilmiş olur. Yani bu dala tepeden bakacak olursak, yaprakların tam bir kare oluşturacak şekilde 90 derecelik açılarla dizildiklerini ve üstteki yaprakların bu sayede alttaki yaprakları örtmediğini görürüz.28 Bu görmeye alışık olduğumuz bir şekildir. Ancak, insanların çoğu tohumların neden özellikle bu şekilde açtığını düşünmezler. Oysa bu, bir planın ve tasarımın sonucudur. Ve amaç, yaprakların üst üste çıkarak birbirlerini örtmelerini engellemek ve hepsinin güneş ışığından faydalanabilmelerini sağlamaktır.
Daha karmaşık bir form olan spiral şekline de çok sık rastlanır. Bitkideki bu spiral hareketi gözlemlemek için bir ip kullanılabilir. Bir yaprağın tabanına ip bağlayıp sonra ipi dallara ve budaklara kadar uzatın, geldiğiniz her yaprağın gövdesinde bir kere halka yapın, kavisler mümkün olduğunca düzgün olsun. Bu yöntemle, kara ağaç veya ıhlamur ağacında yaprakların ortalama olarak komşu yaprakta budağın etrafında yarı yol kadar (180 derece) dolandığını görürsünüz; böylece ip yaprak başına 1/2 dönüşle bağlanır. Kayın ağacının yaprakları yalnızca 120 derece aralıklara sahiptir; yaprak başına 1/3 döner. Elma ağacı 144 derece ile 2/5 dönüş, kara çam 5/13. Eğer matematiğe meraklı iseniz, bu oranların nasıl tesadüfen olmayıp, her bir payın ve birimin birbirine hemen bitişik olanların toplamı olduğunu bulursunuz. (aşağıda görüldüğü gibi) Her iki sayı dizilimi de aynı benzer ve basit işlemi yapar:
1, 1, 2 (1+1), 3 (1+2), 5 (2+3), 8 (3+5), 13 (5+8), 21 (8+13), 34 (13+21), 55 (21+34), 89 (34+55), 144 (55+89), 233 (89+144), 377 (144+233), ...29
Bu özel dizilim, bu kuralı keşfeden Fibonacci isimli matematikçinin adı ile anılır ve "Fibonacci serisi" olarak bilinir. Bu kural estetik mükemmellik manasına gelir ve resim, heykel, mimari gibi alanlarda temel bir ölçü olarak kullanılmaktadır. Doğada çok sık rastlanılan bu oran bitkilerdeki ince hesap ve tasarımı anlamada önemli bir anahtardır.
3/8'in ötesindeki kesirler yosun, lahana ya da her iki tarafa spiral yönde giden taç yapraklı, ayçiçeği gibi sık tohum ya da yaprak sistemlerinde bulunur. Bu bitkilerin yaprakları merkezin etrafında sağdan veya soldan dolanırken bir spiral çizerler, bu spirallerde tur başına düşen yaprak sayısıda fibonacci kuralına göre belirlenir. Mesela papatyanın merkezi üç ardışık kesir kullanır: 13/34, 21/55 ve 34/89; yani yaprağın merkezi boyunca yapacağı bir tur dönüşteki yaprak sayısı ve buna denk düşen dönüş açısı önceden bellidir30.
Fibonacci dizisi doğada çok sık bir biçimde karşımıza çıkar. Bu sayılar kullanılarak üretilen kesirler, bize "Altın Oran"ı verir. Yani Fibonacci sayılarını aşağıda görüldüğü gibi birbirini takip eden kesirler halinde yazdığımızda, ortaya çıkan bölmelerin tamamı estetik mükemmellik manasına gelen ve çoğu zaman "Altın Oran" adı da verilen sayıdır:
1/1, 1/2, 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89...
Görüldüğü gibi bu yolla elde edilen dizinin terimleri Fibonacci dizisinin birbirini takip eden sayılarının bölümü şeklindedir. Ve bu dizinin terimleri olan oranları çam kozalaklarında (5/8, 8/13), ananas meyvesinde (8/13), papatyanın orta kısmındaki floretlerde (21/34), ayçiçeklerinde (21/34, 34/55, 55/89) sağ ve sol spirallerin sayısı olarak görmekteyiz. İşte bu oran ve bu oran sayesinde ortaya çıkan görüntü, doğadaki çiçeklere, ağaçlara, tohuma, deniz kabuklarına ve daha sayısız canlıya estetik bir mükemmellik kazandırır.
Altın oranın doğadaki yeri bununla da kalmayıp, ideal yaprak açılarında da kendini göstermektedir. Bilindiği gibi bitkilerde yapraklar, dik gelen güneş ışınlarından maksimum yararı sağlamak üzere belli bir açıyla sıralanırlar. Örneğin, 2/5'lik yaprak diverjansına sahip bir bitkide yaprak aralarındaki açı,
2 x 360 derece / 5 = 144 derecedir.31
Yapraklarda karşımıza çıkan sayısal mucizeler bununla da sınırlı değildir. Yaprak yüzeyleri de belirli matematik hesaplarının sonucunda anlaşılabilecek tasarımlara sahiptirler. Yaprağın ortasından geçen damar (midrib) ve ondan çıkarak yaprak yüzeyine dağılan damarlar ve bunların besledikleri dokular, bitkiye belirli bir şekil ve yapı kazandırırlar. Yapraklar çok farklı formlara sahip olmalarına rağmen bu hassas ölçüleri muhafaza ederler.
Bitkilerin belirli matematik formüllere göre şekillenmiş olmaları onların özel olarak tasarlanmış olduklarının en açık delillerinden biridir. Bitkinin atomlarında, DNA'sında gördüğümüz hassas ölçüler ve dengeler, bitkinin dış görünümünde de ortaya çıkmaktadır. Bitkinin Güneş'ten maksimum faydalanması gibi hayati amaçların yanısıra, bitkiye estetik bir güzellik kazandıran bu formüller, belirli sayıdaki moleküllerin biraraya gelmesiyle ortaya çıkan renklerle birleştiğinde ortaya olağanüstü manzaralar çıkmaktadır. İşte bu altın oran, sanatçıların çok iyi bildikleri ve uyguladıkları bir estetik kuralıdır. Bu orana bağlı kalarak üretilen sanat eserleri estetik mükemmelliği temsil ederler. Sanatçıların taklit ettikleri bu kuralla tasarlanan bitkiler, çiçekler ve yapraklar Allah'ın üstün sanatının birer örneğidirler. Allah Kuran'da herşeyi bir ölçüyle yarattığını bildirmektedir. Bu ayetlerden bazıları şöyledir:

Yere (gelince,) onu döşeyip-yaydık, onda sarsılmaz-dağlar bıraktık ve onda herşeyden ölçüsü belirlenmiş ürünler bitirdik. (Hicr Suresi, 19)

... Allah, herşey için bir ölçü kılmıştır. (Talak Suresi, 3)

... O'nun katında herşey bir miktar (ölçü) iledir. (Ra'd Suresi, 8)

... Şüphesiz, Allah herşeyin hesabını tam olarak yapandır. (Nisa Suresi, 86)





YAPRAĞIN İÇİNDE NELER OLUYOR?


Önceki konularda da örneklerini gördüğümüz gibi yaprak, üstün bir ilim ve sanatla yaratılmış bir tasarım harikasıdır. Birkaç milimetre kalınlığındaki herhangi bir yaprak, bir fabrika kadar büyütülseydi ve biz de onun içinde dolaşabilseydik, gördüklerimiz karşısında şaşkınlığa düşerdik. Örneğin küçük bir maydanoz yaprağının içinde dahi çok gelişmiş ve her tarafı sarmış bir boru ağı, yirmiden fazla kimyasal madde üreten ve bunları depolayan kimya merkezleri, güneş enerjisini hiç durmadan şekere çeviren enerji santralleri, bu işi başlatan güneş kolektörleri, her noktada karşımıza çıkan hava kontrol merkezleri, çok güçlü bir güvenlik ve haberleşme sistemi ve daha ne işe yaradığını bilim adamlarının da anlayamadığı pek çok bölümü içeren dev bir kimyasal tesisle karşılaşırdık.
Burada çalışanları durdurup bilgi almak ise mümkün değildir. Çünkü yağ, karbon ve hidrojen gibi maddelerden oluşmuş işçilerin ne konuşacak ağızları, ne bizi görecek gözleri, ne söylediklerimizi kavrayıp anlayacak beyinleri ne de durup bize cevap verecek vakitleri vardır. İlk bakışta hiçbir tereddüte yer bırakmadan anlaşılan ise bu sistemin, sistemde çalışan işçilerin, sistemin kullandığı bütün malzemenin ve ürünlerin üstün bir aklın ve ilmin eseri olduğu gerçeğidir.
Bitkilerde merkezi sinir sistemi ve bu sistemi kontrol eden bir beyin yoktur. Bu yüzden bitkinin her parçası bir diğerinden bağımsız olarak gelişir, buna rağmen her parça ve her doku inanılmaz bir uyum ve işbirliği sergilemektedir. Bitki içinde hücrelerin nasıl haberleştiği, hücrelerin neden farklı dokular oluşturduğu henüz tam olarak çözülememiştir. Bu farklı yapıları oluştururken ortaya çıkan emir komuta zinciri ise bir sır olmaya devam etmektedir.32
Yaprakta görülen kusursuz tasarımın temel elemanları hücrelerdir. Aslında biz bitkinin özelliklerinden ve faaliyetlerinden söz ederken, bitki hücrelerinin özellik ve faaliyetlerini anlatırız. Bitkinin yapısını oluşturanlar da hücrelerdir. Bitkiyi meydana getiren bu hücreler, zamanı geldiğinde farklı dokular oluşturmaya başlarlar. Bazıları biraraya gelerek yaprak ve yaprak damarlarını, bazıları bitkiyi ayakta tutan odunsu yapıyı, bazıları ise kimyasal işlemleri gerçekleştiren dokuları oluştururlar. Her doku belirli bir tasarıma, belirli bir göreve ve yapıya sahiptir. Hücrelerdeki bu farklılaşma sonucunda ortaya çıkan yeni organlar ise birbirlerini tamamlayarak yeni bir tasarımın parçaları haline gelirler. Bütün canlılarda meydana gelen ve aynı hücrelerin farklı görevlere göre farklı yapılara dönüşme süreci, bilinçli ve üstün bir tasarımın önemli delillerinden biridir.
Yaprağı oluşturan dokular güneş ışığını maksimum toplayacak, her türlü dış etkiye dayanabilecek, en az malzemeyle en fazla işlem yapabilecek şekilde tasarlanmıştır. Ayrıca yaprak bir kağıt inceliğinde olmasına rağmen içine sığdırılmış olan milyonlarca özel hücreyi koruyacak ve içindeki kompleks ve yoğun trafiği kontrol edecek yapılarla donatılmıştır. Bu dokulardan bazılarını daha yakından görelim:



Yaprağın Bölümleri


Üst ve alt epidermis (yaprağın kabuğu): Bu iki hücre katmanı mumsu dokuyu oluştururlar. Yaprağın en dış kısmını oluşturan bu doku çok farklı bir yapıya sahiptir. Özel hücreler tarafından üretilen mumsu yapı, yaprağın üzerinde su geçirmez bir tabaka oluşturur. Böylece aşırı su kaybını engeller. Güneş ışığını yansıtır. Bitkinin gözenekleri kapandığında, bu doku sayesinde bitki bir balon gibi içindeki havayı ve sıvıları hapsedebilir. Epidermis tamamen transparandır.

Mezofil : Bu dokunun da çok önemli işlevleri vardır. Fotosentez yapan iki hücre katmanından meydana gelir: "Palisad mezofil" (sütun şeklindeki hücreler) çubuksu hücrelerden oluşur, "süngerimsi mezofil" ise küresel hücrelerden meydana gelir. Bu hücreler fotosentez tesisleri olan klorofilleri barındırırlar. Bunun dışında çeşitli görevler için de özel yapılara sahiptirler.

Hava boşlukları : Hem süngerimsi hem de çubuksu mezofil (yaprakların yumuşak iç dokusu) hücrelerinin arasında hava boşlukları vardır. Süngerimsi mezofildeki hava boşlukları daha büyük ve "stoma" adı verilen hava deliklerine daha yakındır. Ancak bu yerleşim gelişigüzel değildir. Bu sayede süngerimsi mezofil ihtiyacı fazla olduğu için, çubuksu mezofile göre daha fazla karbondioksit alır.

Gözenek (stoma): Bunlar yaprağın alt yüzündeki küçük deliklerdir. Yapraklarının üst yüzeyinde gözeneğe sahip olan birkaç bitki de vardır. Bu gözenekler yaprağın en özel parçalarından biridir. Yaprağın dış dünyayla bağlantı kuran kapısı gibi, yaprağa havadan giren gazları, yapraktan çıkacak buharı, yaprağın içindeki basıncı denetlerler. Bunun yanında diğer görevleri ve açılıp kapanmasını sağlayan gözcü hücreleriyle birlikte bir tasarım harikasıdırlar.
Bir ağaç daha fazla veya daha az hava almak istediğinde, yapraklarındaki burun delikleri gibi ayarlanabilen bu gözenekleri kullanır. Bunlar yaprağın yüzeyinde, özellikle de alt kısımda yer alan çok sayıdaki gözle görülemeyen mikroskobik açıklıklardır. Bunların her biri nem, ısı ve ışık gibi şartlarda otomatik olarak uyarılmak yerine, bir çift nöbetçi hücre tarafından kontrol edilir. Havanın çok kuru ve sıcak olduğu zamanlarda gözenekler sadece aralık kalırlar; ama nem, nöbetçi hücreleri şişirdiğinde aralıklarını artırmaya başlarlar. Soğuk ve yağmurlu havalarda ise gözenekler tamamen açılırlar; böylece kloroplastın havaya buharlaştırmak üzere fazla nemi olur. Kloroplast ise, ihtiyaç duyduğu havayı ve besini, gözeneklerden gelen güneş ışığı sayesinde karbondioksidi emerek elde eder. Yaprak yüzeyinin 1 milimetrekaresinde 50-700 kadar gözenek olabilir. Bir yaprağın tamamında ise gözenek sayısı milyonları bulabilir. Örneğin ayçiçeğinin tek bir yaprağında 13 milyon stoma sayılmıştır. Bu milyonlarca kapının her biri kendi başına hareket eden hücreler tarafından kapatılır veya açılır.33 İnsanların bu tür sistemler için karar veren haberleşme ve karar mekanizmaları varken, tek bir yerden kontrol edilmeyen ve sadece sıradan bir hücre olan bu yapıların yaptıkları işin ne kadar şaşırtıcı olduğu daha iyi anlaşılmaktadır.
Fotosentez sırasında üretilen oksijen de sadece açık bir stomadan çıkarak yaprağı terk edebilir. Bu gaz alışverişi sırasında büyük miktarlarda su kaybı da yaşanmaktadır. Yaprak yüzeyinin %1'ini kaplayan stomalar kaybedilen suyun %90'ından sorumludur. Mesela pamuk ağaçları, sıcak çöl günlerinde, saatte 400 litre civarında su kaybederler. Bu gibi çevresel faktörler de stomanın açılıp kapanmasını etkiler. Su miktarı, yaprak için uygun olan kritik noktanın altına düştüğünde kalan suyun buharlaşmasını önlemek için stoma kapanır. Stomaların açılıp kapanmasını kontrol eden gözcü hücreler içlerine potasyum iyonları aldıklarında, su hücrenin içine girer ve hücrenin şişmesine yol açar; böylece stoma açılır. Potasyum hücreyi terk ettiğinde ise su da hücreden çıkar ve stoma kapanır. Bu sistem, yapraktaki suyun basıncına göre, "absisik asit" adı verilen bir hormon tarafından düzenlenir ve yönetilir.34 Çoğu bitkinin stoması gündüz açılıp gece kapansa da, bazı türlerin stoması gündüz kapanır, gece açılır. Bu türler genelde sıcak, kuru iklimlerde yaşayan kaktüs, ananas gibi bitkilerdir. Bu bitkiler geceleyin karbondioksiti içine alır ve 4-karbon asidine dönüştürür. Gündüz ise, stoma kapalı olduğunda, asitten karbondioksit açığa çıkar ve hemen fotosentezde kullanılır. Bu işlemin adına "crassulacean asit metabolizması" denir. Böyle bitkilere de "CAM" bitkiler adı verilir.35 Yaprağın bölümlerinin arasında yalnızca stoma incelendiğinde bile insanda hayret uyandıran bir tasarım görülür. Bu birim, sadece kapıyı bekleyen bir bekçi değil, tek başına karar verebilen bir güvenlik merkezi, dışarıdaki ve içerideki ortamı aynı anda denetleyen bir meteoroloji uzmanı ve bitkinin tamamından haberdar olan bir acil çıkış noktasıdır.
Damarsal kümeler: Yaprağın ortasından geçen ana damarın adı "midrib"tir. Bu damar ve ondan çıkarak yaprak yüzeyini kaplayan diğer damarlar damarsal kümelerden meydana gelir. "Ksilem", yaprak içinde çok önemli görevlere sahip odunsu bir dokudur. Bütün bitki içinde, vücudumuzdaki damarların görevini gören bu doku aldığı çeşitli görevlere göre değişik yapılar kazanır. Örneğin topraktan su ve mineral tuzlarını getirir; bazen depo görevindedir; bazen de oldukça sert bir odun haline gelerek bitkiye destek olur.36 Bu damarların bitki ve yaprak içindeki dağılımları gelişigüzel değildir. Her yaprak ve yapraktaki her damar belirli bir tasarıma ve biçime sahiptir. Yaprağın düz ve dik durmasını sağlayan bu damarlar yaptıkları görev için belirli fiziksel formüllere uymaktadırlar.

Floem (damar dokularının kalburlu boru kısmı): Bu borular aminoasit gibi organik besinleri yaprağa getirir, ayrıca şekerli sıvıyı yapraktan dışarı taşır. Fotosentezle üretilen glikoz, sakaroza çevrilir ve "floem" ile bitkinin diğer bölümlerine taşınır ya da nişastaya çevrilip depolanır.37

Bitkinin hazine sandığı, "vakuol": Bitki hücresinin önemli bir bileşeni ise içi sulu bir karışımla dolu, hücreye ince bir zarla bağlı bir kese olan vakuoldür. Bu kesenin içindeki hücre özsuyu genellikle hafif asidiktir ve ergimiş atmosferik gazlar, organik asitler, şekerler, pigmentler, parfümlerin ve aromatik kokuların kaynağı olan uçucu yağlar, ilaç için kullanılan glikozitler, zehirli özellikleriyle bilinen alkaloitler, kristaller, mineral asit tuzları, bitkinin öz suyunda bulunan kauçuk, çay bitkisinde daha fazla görülen tanenler, çiçeklerin ve meyvelerin mavi, mor, sarı, erguvan rengini veren boya maddeleri flavonlar ve antosyanlardan ve daha nicelerinden oluşur. Bütün bu maddeler gözle görülmeyen bir hücrenin içindeki, ancak elektron mikroskobuyla görülebilen bir mekanda birbirlerine karışmadan, görev zamanlarının gelmesini beklemektedirler. Vakuol dolu olduğunda hücrenin içerikleri hücre duvarına basınç uygular, hücreyi şişik bir futbol topu gibi katı (veya şişkin) hale getirir ve sitoplazmayı hücre duvarlarına doğru iterek bitkinin dik durmasının sağlar. Kalın hücre duvarı ve odunsu gövde şeklindeki mekanik destekten yoksun otsul bitkiler, dik durabilmek için işte bu iç su baskısını kullanırlar; eğer bunu yapamazlarsa bitki solar. Vakuol aynı zamanda bir kısım reaksiyon için gerekli olan ıslaklık derecesini ve hücrenin ışığa göre eğilim hareketlerini ayarlar.38
Vakuolün içindeki maddeler nasıl olup da biraraya geliyor ve birbirlerine karışmadan depolanabiliyorlar? Mesela bir kap alıp içerisine çeşitli parfümler, yağlar, alkoller, şekerli sular, çeşit çeşit boyalar, sıvı kauçuk, tuzlu su gibi maddeler koyarsak bu maddeler kısa bir süre sonra birbirine karışır. Eğer bu maddeleri balon gibi bir malzemenin içine doldurursak maddelerin karışması daha hızlı olur. Daha sonra ihtiyacımız olduğunda bu maddeleri balondan dışarı çıkartmaya çalışırsak bir sonuç elde edemeyiz. Artık bu maddeleri yeniden kullanılır hale getirmemiz için bir kimya laboratuvarında ayrıştırma işlemine başvurmamız gerekir. İşte vakuoller ilk yaratıldıkları günden beri bu karmaşık işlemi hiç hata yapmadan gerçekleştirirler. Çiçekler renkleneceği zaman boyayı, koku üretileceği zaman parfümleri çıkartıp gerekli yerlere gerekli miktarlarda ulaştırırlar. Bu işlemleri kusursuz bir şekilde gerçekleştiren vakuol hücreleri, diğer hücreler gibi karbon, hidrojen, oksijen gibi maddelerden oluşmuş ve ancak mikroskopla görülebilecek organizmalardır. Bu hücreler bir depocu gibi iş görmelerine rağmen, depocunun sahip olduğu hiçbir özelliğe sahip değildirler. Yani hangi ürünleri kabul edeceğini, bunları nereye yerleştireceğini, bu ürünlerin nereden geldiğini, nereye gideceğini biliyormuş gibi davranmasına rağmen, aslında bunları görecek ve tanıyacak organlara sahip değildir. Bir başka deyişle biz bir ağacı alıp, değerli maddeleri sakladığımız bir deponun önüne dikip, onu bu maddelerin geliş gidişinden sorumlu yapamayız. İşte vakuol hücresi de, bu şuursuz bitkinin yine şuursuz ve gözle görülemeyecek kadar küçük bir parçasıdır. Yaptığı bütün işleri kendi iradesi ve aklıyla değil, onu yaratan Allah nasıl ilham ettiyse o şekilde otomatik olarak gerçekleştirmektedir.
Bu saydıklarımız dışında yaprak içinde farklı görevler almış daha birçok yapı vardır. Bu yapıların her biri yukarıda sayılan bölümler gibi kompleks yapılara sahiptirler. İncecik bir yaprakta biraraya gelen bu sistemler daha ileride de göreceğimiz gibi canlı hayatı için çok önemli bir işlem olan fotosentezi gerçekleştirip dünyayı yaşanacak bir hale getirirler. Sonuçta bitkinin hangi parçasını ele alırsak alalım, belirli bir amaç için tasarlanmış olan özel bir makinanın hassas bir parçasını incelemiş oluruz. Bu tasarımda işe yaramayan, görevi olmayan tek bir doku dahi söz konusu değildir. Her biri kendi içinde farklı bir göreve sahip olan değişik sistemler biraraya gelerek ortak bir amaç için uyumlu bir çalışma yapmaktadırlar.
Kendi kendine çalışan, yakıt olarak hava ve su kullanan, tek hedefi hizmet olan, her koşulda her ortamda kendi kopyalarını üretebilen, hayati özelliklerinin yanında kokusu, rengi ve şekliyle, üstün bir sanat eseri olan bu muhteşem makina, Allah'ın sonsuz ilminin ve hayranlık uyandırıcı sanatının bir örneğidir.


Evrimcilerin Mantıksızlıkları

Görüldüğü gibi bir bitkiye son derece milimetrik hesaplarla sığdırılmış kompleks yapılar vardır. Yapraklardaki tüm kompleks sistemler milyonlarca yıldır aynı kusursuzlukla işlemektedir. Peki bu sistemler nasıl olup da bu kadar küçük bir alana sığdırılabilmiştir? Yapraklardaki kompleks tasarım nasıl oluşmuştur? Bu kadar mükemmel ve örneksiz bir tasarımın kendi kendine oluşması mümkün müdür?
Evrimcilerin yaprakların oluşumu ile ilgili olarak ortaya attıkları teorilerden biri olan "Telome Teorisi"ne göre yapraklar, sözde ilkel damarlı bitkilerin ayrılmış dallarının birleşmesi ve yassılaşması ile gelişmiştir.39 Ancak, yeryüzünde trilyonlarca yapraktan tek bir tanesinin yapısındaki olağanüstü kompleks sistem dahi bu iddianın mantıksızlığını ispatlamaya yeter. Dahası, bu teori bir-iki tane kolay soruyla bile çürütülebilecek kadar temelsizdir. Örneğin:
- Bu dallar niçin birleşme ve yassılaşma gereği duymuşlardır?
- Bu birleşme ve yassılaşma nasıl bir süreç sonucunda gerçekleşmiştir?
- Dallar ne tür tesadüfler sonucunda yapı ve tasarım olarak tamamen farklı yapıdaki yapraklara dönüşmüşlerdir?
- Sözde ilkel damarlı bitkilerden nasıl olup da binlerce çeşitteki
bitkiler, ağaçlar, çiçekler, otlar ortaya çıkmıştır?
- Böyle bir çeşitliliğe neden ihtiyaç duyulmuştur?
- Bu ilkel damarlı bitkiler nasıl olup da yoktan var olabilmişlerdir?
Bugüne kadar hiçbir evrimci, bu soruların sadece birine dahi mantıklı ve bilimsel bir cevap verememiştir.
Teorinin içinde bulunduğu çıkmazı anlayan bazı evrimciler, bu sefer de bitkilerin kökeni hakkında yeni bir mantıksız iddia ortaya atmışlardır. Bu iddialarına da, bilimsel bir görünüm verebilmek için her zaman yaptıkları gibi Latince bir isim vermişlerdir: "Enation Teorisi". Yaratılış gerçeğini bir türlü kabul edemeyen evrimcilerin bu teorilerine göre yapraklar, bitki saplarının tomurcuklarından evrimleşmiştir.40
Bu iddiayı da yine sorular sorarak inceleyelim:
- Nasıl olup da gövdenin belirli yerlerinde bir yaprak oluşturmak üzere tomurcuk gibi bir yapı meydana gelmiştir?
- Daha sonra tomurcuklar nasıl yapraklara dönüşmüşlerdir? Üstelik de sayısız çeşide sahip kusursuz bir yapıya sahip olan yapraklara…
- Biraz daha geriye gidelim. Tomurcukların çıktığı dallar ve hatta bu dalların bağlı olduğu bitkiler nasıl oluşmuştur?
- Tomurcukların bazı cinslerde yapraklara, bazılarındaysa çiçeğe ve zamanla meyveye dönüşmesini sağlayan kompleks mekanizmalar rastlantıların eseri olabilir mi?
Evrimciler her konuda olduğu gibi bitkilerin varoluşu konusunda da bütünüyle hayal gücüne dayalı senaryolardan başka bir açıklama üretemezler.
Gerçekte her iki teorinin de anlatmak istediği özetle şudur: Bitkiler evrimcilere göre tesadüfen gelişen olaylar sonucunda ortaya çıkmışlardır. Tesadüfen tomurcuklar, dallar oluşmuş, bir başka tesadüf olmuş ve klorofil kloroplastın içinde var olmuş, başka tesadüflerle yapraktaki tabakalar oluşmuş, tesadüfler tesadüfleri kovalamış ve sonunda kusursuz ve son derece özel yapısıyla yapraklar ortaya çıkmıştır.
Bu arada yaprakta tesadüfen oluştuğu iddia edilen bu yapıların hepsinin aynı anda ortaya çıkması gerektiği de göz ardı edilmemesi gereken bir gerçektir. Çünkü, yapraktaki yapı ve sistemlerin hepsi iç içe geçmiş ve birbirine bağlı olduğundan, tek bir tanesinin ya da birkaçının tesadüfler sonucunda ortaya çıkmış olması bir anlam ifade etmeyecektir. Çünkü eksik parçalarla sistem çalışmayacaktır. Bunun sonucunda da, yeni tesadüflerle diğer eksik parçaların tamamlanmasını bekleyemeden bitkiler yaşamlarını ve nesillerini sürdüremeyecek ve yok olacaklardır. Bu yüzden bitkinin yaşamını sürdürebilmesi için kökündeki, dallarındaki ve yapraklarındaki kompleks sistemlerin hepsinin aynı anda var olması gerekmektedir.
Evrim teorisine göre kullanılmayan organlar yok olurlar. Görüldüğü gibi evrimcilerin bu kuralı, yine kendilerinin öne sürdükleri, "uzun zaman içinde ardı ardına gelen küçük tesadüflerle canlıları oluşturan parçaların ortaya çıktığı" iddiası ile açıkça çelişmektedir. Çünkü tüm parçaları tamamlanıncaya dek işlemeyen kompleks bir sistemin birkaç parçasının başlangıçta oluştuğunu varsaysak dahi, bunların uzun zaman içinde hayali "şanslı" tesadüflerin yardımıyla eksik parçaların tamamlanmasını beklemeleri söz konusu değildir. Çünkü bütün parçalar tamamlanıncaya dek daha önceden oluştuğu varsayılan parçalar ya da organlar kendi başlarına hiçbir işe yaramayacak ve evrimcilerin "dollo" kuralına göre yok olacaklardır.
Dolayısıyla evrimin, zaman içinde meydana gelen küçük tesadüflerle bir canlının ya da canlılardaki kompleks bir sistemin oluştuğu iddiası hem akla hem mantığa hem de bilime aykırı olduğu gibi, evrimcilerin kendi koydukları kurallarla da çelişmektedir. Bu durumda geriye tek bir seçenek kalmaktadır: Canlılar bütün kompleks yapı ve sistemleriyle bir anda, eksiksiz ve kusursuz olarak ortaya çıkmışlardır. Bu da, onları sonsuz bir güç ve ilim sahibi olan Allah'ın yarattığı anlamına gelmektedir.
Yeryüzündeki her canlıda olduğu gibi bitkilerde de tam anlamıyla kusursuz sistemler kurulmuştur ve ilk yaratıldıkları andan itibaren özelliklerinde hiçbir değişiklik olmadan günümüze kadar gelmişlerdir. Yapraklarını dökmelerinden kendilerini Güneş'e çevirmelerine, yeşil renklerinden gövdelerindeki odunsu yapıya, köklerinin varlığından meyvelerinin oluşmasına kadar tüm yapıları örneksizdir. Daha iyi sistemlerin oluşturulması hatta benzerlerinin oluşturulması (örneğin fotosentez işlemi) günümüz teknolojisiyle bile mümkün değildir.


Bitkilerdeki Duyular

Bitkinin içine biraz daha yakından baktığımızda çok ilginç sistemlerle karşılaşırız. Bu sistemlerin en önemlilerinden biri, bitkilerin içindeki tepki mekanizmalarıdır. Yani dışarıdan bakınca ne ağzı, ne gözü, ne de bir sinir sistemi olan bitkiler, yeri geldiğinde bazı duyular konusunda insandan bile hassas olabilmektedir. Bitkilerin bizim gibi gözleri yoktur, ama bizim gördüğümüzden daha fazlasını görürler. Çünkü onların ışığa duyarlı bileşiklerden oluşmuş proteinleri vardır. Bu sayede bizim gördüğümüz ve göremediğimiz bütün dalga boylarını algıladıkları gibi, ışığa karşı duyarlılıkları insan gözününkinden daha fazladır.41
Bitkiler bu görme yeteneklerini kullanarak büyümek ve hayatta kalmak için gerekli olan; ışığın yoğunluğu, kalitesi, yönü ve periyodu gibi koşulları tespit ederler. Bitkinin bir günlük hayat düzeni kendini ışığa göre kuran bir "iç saat"in kontrolündedir. Bu aşamada neler olduğunu bilimsel olarak açıklamak gerekirse, bitkide ışığı görmekle görevli iki protein ailesi bulunur. Bu iki aileden biri, beş farklı çeşidi olan "fitokrom", diğeri ise iki farklı çeşidiyle "kriptokrom" adlı proteinlerdir. Bu proteinler aynı zamanda ışığı algılayabilen birer ışık reseptörüdürler. Bu sayede bitkinin içindeki saati, ışığın her an yaptığı değişikliklere göre kurmakla görevlidirler.42
Bitkiler sadece güneş ışığıyla yaşayamazlar; ihtiyaçları olan besinleri tatmak için dilleri yoktur ama yine de bunu başarmaları gerekir. Tat duyusu, topraktan mineral ve besinleri alan bitki kökleri için çok önemlidir. Arabidopsis (tere otu) adlı bitkide yapılan araştırmalarda, bir genin nitrat ve amonyum tuzlarının bol olarak bulunduğu yerleri tespit ettiği ortaya çıkarılmıştır. Bu gen sayesinde kökler gelişigüzel değil, besin yönünde gelişerek bilinçli bir hareket sergilemektedir. Nitratları tespit eden bu gen ANR1'dir.43
Bu gen dışında, Teksas Üniversitesi'nde yapılan diğer bir araştırmada "apiraz" adlı yeni bir enzim keşfedilmiştir. Kök yüzeyinde bulunan bu enzim, mantar gibi toprağa karışmış mikroorganizmaların ürettiği ATP'yi (adenozin trifosfat) tadabilmektedir. ATP molekülü doğada her zaman hazır olan kısa süreli bir enerji rezervidir. Apiraz, bitkinin ATP'yi alıp fosfat besinlerine dönüştürmesini daha sonra da emmesini sağlar.44 Bitkilerin bir çöpçü gibi hücre dışındaki ATP'yi toplayıp kullanılır hale getirmesi ise yeni keşfedilmiş bir mucizedir.
Tatma duyusu gibi dokunma duyusu da bitkilerde çok sık rastladığımız algılardandır. Venüs (Dionaea muscipula) gibi etçil bitkiler, üzerlerine konan böceği bir anda yakalarlar. Mimoza (Mimosa pudica) bitkisi ise en hafif dokunuşta bile ince yapraklarını aşağı doğru indirir. Bezelye ve fasulye gibi tırmanıcı bitkiler hassas dokunma duyuları sayesinde filizlerini sağlam desteklerin etrafına sararlar. Son yapılan araştırmalarda neredeyse bütün bitkilerin bu dokunma duyusuna sahip oldukları ortaya çıkmıştır.45 Bitkiler genelde yapraklara büyük zarar verebilecek rüzgarın şiddetine karşı da dokunma duyusunu kullanırlar. Rüzgar altında kalan bitkiler dokularını sertleştirerek tepki verir ve böylece şiddetli rüzgarlarda kırılmaktan kurtulurlar. Araştırmacılar, dokunma duyusunun güçlendirilmiş doku üretimine nasıl yol açtığını halen bulmaya çalışmaktadırlar. En çok üzerinde durulan teoriye göre, bitki sallandığında kalsiyum iyonları, hücrede kimyasal depo işlevi gören geniş odalardan yani vakuollerden hücre sıvısına geçer. Bu kalsiyum akışı bitki hareket ettiğinde veya bitkiye dokunulduğunda meydana gelen ilk harekettir. Bu hareket, saniyenin onda biri gibi bir hızla gerçekleşir. Daha sonra kalsiyum iyonlarının akışı hücre duvarlarının güçlendirilmesiyle ilgili olan genleri harekete geçirir ve son derece kompleks bir süreç sonunda dokunulan bölgede kalınlaşma olur.46
Bir bitkinin yaşayabilmek için ihtiyacı olan tüm özelliklere son derece kompleks sistemler sayesinde sahip olması, tek bir bitkinin tek bir yaprağının dahi tesadüfen oluşamayacağını görmek ve kavramak için yeterlidir. Bitki hücreleri, beyni, eli, gözü, şuuru ve bilgisi olmayan gözle görülemeyecek kadar küçük varlıklardır. Bu varlıkların, "rüzgarda bitkiyi nasıl kurtarabiliriz?" diye düşünüp bir yöntem geliştirmeleri imkansızdır. Üstelik bu, iç içe geçmiş ve domino taşlarının birbirini yıkması gibi birbirini aktif hale getiren parçalardan oluşmuş bir sistemdir. Bu sistemi ne hücreler kendi akıl ve iradeleriyle oluşturabilirler, ne de tesadüfler böyle kusursuz bir plan ve tasarım yaratabilirler. Tüm bunlar, sonsuz bir ilim ve akıl sahibi olan Allah'ın varlığının delillerindendir.
Başta North Carolina Wake Forest Üniversitesi olmak üzere çeşitli merkezlerde yapılan araştırmaların sonucunda, bitkilerin belirli bir ses frekansını veya titreşimi algılayabildiklerinin düşünüldüğü belirtildi. Örneğin, Wake Forest'da yapılan bir deneyde, normal filizlenme oranı %20 olan turp tohumlarının, belirli bir frekanstaki sese uzun süre tabi tutulduklarında, filizlenme oranlarının %80-90 civarında arttığı görülmüştür. Araştırmacılar, elongasyon (uzama) ve tohum filizlenmesinde aracılık eden "giberellik asit" adlı bitki hormonunun, "işitmeden" de sorumlu olduğunu düşünmektedirler.47
Bu aşamada unutmamamız gereken bir nokta vardır. Bitkilerin beyni ya da sinir sistemi yoktur. Yani bir insan bir nesneye dokunduğunda, onu gördüğünde veya tattığında sinir sistemi ve onun bağlı olduğu beyinde belirli mesajlaşmalar ve komutlar serisi devreye girer. Hafıza, idrak, gibi unsurların da devreye girmesiyle bilinçli bir hareket için karar alınır. Oysa bitkiler böyle bir sinir sistemi, beyin, idrak ve hafızaya sahip değildirler. Ancak buna rağmen, son derece bilinçli davranışlara sahiptirler. Adeta görüyor gibi belli bir yöne dönmekte, dokunuyor gibi kendilerine en uygun zemini bulabilmekte veya tat alabiliyormuş gibi topraktaki birçok madde içinden kendilerine yarayan maddeleri seçebilmektedirler. Dışarıdan bakınca bilinçli yapıldığı görülen hareketlerin ardındaki akıl, elbette kendilerine değil, onları üstün bir akılla yaratmış olan Allah'a aittir.


Akılcı Savunma Sistemi

Bitkiler kendilerini savunmak için çok çeşitli yollara başvururlar. Mekanik savunmada diken, kabuk gibi unsurlar kullanmalarına rağmen, bu silahların etkili olmadığı düşmanlar için özel yöntemler kullanırlar. Bitkilerin böyle durumlarda kullanmak üzere ürettikleri zehirli veya kötü tadı olan kimyasal silahları vardır. Buna verilecek en iyi örnek ısırganlardaki üstün savunma sistemidir. Asetilkolin ve histamin adlı kimyasallar harika bir mekanizmayla "enjeksiyon tüylerinde" biraraya getirilerek, bitkinin içinde stratejik noktalara yerleştirilmiştir. Bu bitkilere dokunulduğunda kimyasallar devreye girerek can yakıcı sıvıyı enjekte ederler.48
3000 farklı bitki ailesinde 10.000'den fazla alkaloid adı verilen zehir çeşidi tespit edilmiştir. Zaten küçük olan hacimlerinde bu kimyasalları depolamak kullanışlı olmadığı için birçok bitki alkaloid, fenol ve terpen gibi kimyasalları sadece ihtiyaçları olduğu zaman üretirler. Çok güçlü etkilere sahip olan bu kimyasallardan dopamin, serotonin ve asetilkolin, insanın merkezi sinir sistemindeki sinirsel taşıyıcılarıyla çok yakın yapısal benzerliklere sahiptirler. Hastalıklarda, ameliyatlarda acıları ve ağrıları dindiren ilaçların büyük bir kısmı bu maddelerden üretilmektedir.49 Bir kimya mühendisinin veya bir eczacının bazı kimyasalları biraraya getirerek, farklı kimyasal maddeler veya ilaçlar üretmesi insan için şaşırtıcı veya hayret verici bir olay değildir. Çünkü insan akıl, bilinç ve bilgi sahibi bir varlıktır. Üstelik, bunları yapabilmek için yıllarca kimya veya ecza eğitimi almıştır. Ayrıca, birçok teknik donanıma sahip bir kimya laboratuvarı da hizmetindedir. Ancak, çoğu kereler yanından geçerken önemsemediğiniz, yeşil, topraktan çıkan bir bitkinin, kendi bedeninde, dışarıdan hiçbir müdahale olmadan, kendi iradesi ve kararı ile kimyasal maddeler üretmesi elbette ki hayret verici bir olaydır. Üstelik, her bitki kendi yapısına ve kullanımına uygun bir kimyasalı, en uygun zamanda, sadece ihtiyacı olduğunda üretmektedir. Bitkinin bu davranışında akıl, bilinç, irade, ani karar verme ve uygulama, bilgi, ve teknoloji vardır. Ve bitkiler bunu daha yeryüzünde ne bir insan, ne bir kimyacı, ne de teknoloji olmadığı zamanlardan beri, milyarlarca yıldır gerçekleştirmektedirler. Peki, bir bitkiye, topraktan çıkan herhangi bir ota bu yetenekleri veren, onu bu olağanüstü özelliklerle donatan güç nedir? Bitkiler hakkında öğrendiğimiz her bilgi, tek başına bize Allah'ın varlığını, gücünü ve sonsuz aklını göstemektedir. Ve insanoğlu, Allah'ın sonsuz ilmi ile yarattığı bu canlılar hakkında hala bir şeyler öğrenmeye devam etmektedir.
Son zamanlarda araştırmacılar, bitkinin diğer bölümlerine yardım sinyali ulaştırmakla görevli, "jasmonatlar" adı verilen yeni bir kimyasal grubu keşfettiler. Bu sinyal iletim sistemi, memelilerdekine benzer bir şekilde çalışmaktadır: Bir bölgede hasar meydana geldiğinde, vücudun diğer bölümlerinde farklı tepkileri harekete geçiren kimyasalların üretimi başlar.50 Örneğin, kendisini oldukça zehirli nikotinle savunan tütün bitkisinde, saldırı jasmonik asit adı verilen mesajcı maddenin üretimini başlatır. Ya da bir tırtıl bir yaprağı çiğnemeye başladığında yaprak, köke doğru yol alan ve nikotin üretimini başlatan jasmonik asiti daha fazla üretir. Üretilen nikotin, yaprağın ön tarafına geri gönderilir ve bu kimyasalın yoğunluğu arttığı için en inatçı saldırganlar bile vazgeçmek zorunda kalırlar. Bazı yapraklar her 1 gram yaprak dokusunda 120 miligram nikotin taşıyacak kadar üretim yapabilir. Bu miktar 100 adet filtresiz sigaranın içerdiği nikotinden fazladır.51
Bazı bitkiler böceğin salgılarını tadarak kendilerini hangi tırtılın yediğini anlar ve tırtılın türüne uygun karşılığı verirler. Mısır, pamuk ve pancar yaprakları, güve tırtılı (Spodoptera exigua) ordusuna karşı dışarıdan yardım çağırırlar. Verdikleri "imdat sinyali" üstün bir aklın ve bilginin eseridir. Yapraklar böcek salgısındaki volisitin adlı maddeyi hissettiklerinde, indol ve terpen adı verilen uçucu karışımları salgılarlar; havaya karışan bu kokular parazit avcısı yaban arılarını (Cotesia marginiventris) yaprağa çeker. Veya bir yaprak yaralandığında savunma genlerinin ürettiği "metil jasmonate" adlı maddeyi salgılar, komşu yapraklar da bu maddeyi koklayarak böceklerin saldırısını durduracak veya avcıları çağıracak diğer kimyasalları üretmeye başlarlar. Örneğin bakla bitkisinin herhangi bir yaprağı yara aldığında, (Vicia faba) komşu yapraklar, yaprak bitleriyle beslenen avcı böcekleri çeken bileşikler salgılamaya başlarlar. Böylece, dışarıdan yardım çağırarak düşmanlarından kurtulurlar.52
Bu aşamada kendimize sormamız gereken bazı sorular vardır. Bir bitki nasıl olur da tırtıl gibi bazı zararlı böceklerin yapraklarını yediğini anlar? Binlerce kimyasal bileşik içinde bu böceklerin veya diğer bitkilerin salgılarını nasıl ayırt edebilir? Bu böcekleri yok eden başka böcekler olduğunu ve onları çekmek için belirli kokuların etkili olduğunu, bu kokuların nasıl ve hangi miktarda üretileceğini, rüzgarla havaya karışarak bu böceklerin koku algılarına ulaşacağını nereden bilir? Ayrıca, yardıma çağırdığı böceklerin kendisine zarar vermeyeceklerinden nasıl emin olabilir? Tüm bunlar, üzerinde düşünülmesi gereken önemli sorulardır. Dahası, bu canlılar, ilk yaratıldıkları andan itibaren, milyonlarca yıldır aynı savunma sistemini kusursuz olarak kullanmaktadırlar. Elbette bitkinin bu kadar karmaşık işlemi düzenli ve kusursuz bir şekilde organize edecek, hesaplayacak, planlayacak ve gerekli kimyasalları üretecek bir bilinci, aklı ve bilgisi yoktur. Bir bitki ne tırtılı ne de onu yiyen böceği tanır. Hatta kokunun ne olduğunu kavrayacak bir aklı da yoktur. Bitkinin bilme, anlama, tanıma gibi bilinçle ilgili özelliklere sahip olmadığı da ortadadır. Bütün bu özellikler bitkiye verilmiş, bitkiyle birlikte tasarlanmıştır. Tüm bu tasarımın sahibi ise yerin, göğün ve ikisinin arasında bulunan herşeyin Rabbi olan Allah'tır.


Yaprakların İlginç Hareketleri

Bir önceki bölümde gördüğümüz gibi bitkiler sanki canlı bir insan gibi gören, dokunan, tat alan sistemlerle donatılmışlardır. Bu duyular tek tek ele alındığında hepsinin mükemmel tasarımlara sahip olduğu görülür. Bitkideki bu sistemlerin sonucu olarak ortaya çıkan çeşitli hareket, büyüme ve savunma mekanizmaları da, algı sistemleri gibi yaratılışın önemli delillerini sergilemektedirler.
Kökleriyle toprağa bağlı olan bitkiler belki bir yere gidemezler ama o kadar da hareketsiz değillerdir. Bitkinin içinde henüz tam olarak anlaşılamayan mekanizmalar, bitkinin ihtiyaçlarına göre tepkiler vermesini sağlar. Bitkiler, sanki gözü olmadan gören, eli olmadan dokunan bir canlı gibi ışığa, suya, besine ulaşmak için ilginç hareketler sergilerler. Her tepki kendi içinde ayrı bir sisteme ve tasarıma sahiptir. Bitkinin maksimum gelişimini sağlamak için tasarlanmış olan bu sistemleri kontrol eden özel enzimler, hormonlar ve özel dokular vardır.
Bitkilerin hareketlerini sağlayan en önemli etkenlerden biri ışığa olan duyarlılıklarıdır. Bitki filizlerindeki ışığa duyarlılık ya da fototropizm (ışığa yönelim) olarak bilinen yardım sistemi, genelde insan gözünün görünür ışığa olan duyarlılığı gibidir. Tüm duyu sistemlerinde olduğu gibi ilk meydana gelen olay uyarıcının, yani ışığın algılanmasıdır. Bu ışığın algılanabilmesi için tek yol, ışığın pigment adı verilen kimyasal materyaller tarafından emilmesidir. Emilim süreci sırasında elde edilen enerji, sonrasında diğer sistemleri çalıştırmak için kullanılacak olan kimyasal enerjiye dönüştürülür. Bitki filizi içindeki ışığa duyarlı yardım sistemi iki aşamadan meydana gelir: İlk aşamada devreye giren mekanizmalar ışık uyarıcısını alır; onu elektriksel ve kimyasal sinyallere dönüştürür. İkinci, yani cevap mekanizması adı verilen aşamada ise dalın büyümesi için gerekli sistemler devreye sokulur, böylece bitki ışığa doğru yönelir.53


Bitkilerin hareketleri:

Bitkiler farklı koşullar altında farklı şekillerde hareket ederler. Tüm hareketleri ise, auksin, gibberellin, sitokinin gibi hormonlar tarafından kontrol edilir. Ancak bu maddelerin kesin çalışma şekilleri henüz tam olarak anlaşılamamıştır. Bitkilerin hareket çeşitleri özetle şöyledir:
Yönelim (tropizm): Işık, yerçekimi, dokunma ve su gibi uyarılara karşı oluşan büyüme tepkileridir.
Kıvrılma: Bitki organlarında, yapraklar ya da çiçeklerde meydana gelir. Güneş'in hareketleri, gün uzunluğu ve dokunma ile gerçekleşen şişkinlik (turgor) basıncı sonucu oluşan bir harekettir.
Morfogenetik tepkiler: Gün uzunluğuna karşı, bitkinin dokusunda meydana gelen değişikliklerdir.
Fotoperiyodizm: Işığın konumuna, gündüz veya gece durumuna göre bitkide meydana gelen değişikliklerdir.54
Geotropizm: Bitkinin ana kökünün aşağı doğru yerçekimi yönünde uzaması hareketidir.
Tigmotropism: Bitkilerin dokunmaya karşı gösterdikleri tepkidir. Daha önce ayrıntılı olarak söz edildiği gibi, bitkiler dışarıdan gelen uyarılara elektriksel ve kimyasal tepkiler verirler. Bunun yanında, kendilerine dokunan desteklerin çevresinde kıvrılma eğilimine de girerler. Tutku çiçeği (Passionflower) gibi sarmaşık bitkileri buna bir örnektir.55
Hidrotropism: Bitki köklerinin su kaynağına doğru yönelmesi hareketidir. Suyun yoğun olmadığı topraklarda bitki kökleri bir sondaj makinesi gibi su bulmak için toprak altı katmanlarına doğru ilerlerler.56
Toprağa dikilen bir bitkinin her organının ayrı bir yönde, ihtiyacına yönelik bir hareket göstermesi olağanüstü ilginç bir olaydır. Bilim adamları, hala bitkinin farklı organlarının "nasıl bir kararla" farklı yönlere doğru hareket ettiklerini açıklayamamaktadırlar. Örneğin bitkinin toprak üstünde kalan kısmı ışığa doğru yönelir. Bitkinin ana kökü ise, yukarıda da belirtildiği gibi, yerçekiminin etkisiyle aşağı doğru uzar. Filizler ise yerçekiminin tersine, yukarıya doğru gelişirler. Bitkinin içinde sanki bir mıknatısın iki ucu gibi bir kutuplaşma vardır.57 Bitkinin en küçük parçası bile bu kutuplaşma etkisini ve hangi parçanın ne yönde gelişeceği bilgisini taşımaktadır. Örneğin siz bir dalı ters tarafından bile dikseniz, köklenme diğer uçtan başlayacaktır.58 Yani bitkinin tohum kısmı aşağı doğru ilerlerken filizler daima zıt yönde yukarıya doğru büyür. Eğer bitkinin yukarı doğru büyüyen filiz kısmını toprağın içine gelecek şekilde ters olarak dikerseniz, köklenme olmayacaktır. Bütün bitkiler için geçerli olan bu kutuplaşma kuralı, bitkiler ilk yaratıldıkları günden beri hiç aksamadan bitkilerin büyüme yönlerini belirler. Ancak bitkinin içinde herhangi bir karar merkezi yoktur. Veya bitkinin içinde yer alan bazı atomlar daha akıllı veya daha bilgili oldukları için diğer atomlara söz dinleten bir konumda değildirler. Hiçbir atom da ne yönde büyüyemeyi gerçekleştireceği konusunda gidip bir otoriteden bilgi veya komut almaz. Bazı hücreler nasıl yaprak, bazıları çiçek, bazıları da dal oluyorsa bitkinin hangi yönde gelişeceği de önceden belirlenmiş bir düzeni takip eder. Bu yüzden aynı bitkiyi dünyanın neresinde ekersek ekelim, aynı şekil ve tatla karşılaşırız. Her bitki ilk yaratıldığı günden beri, kendisini yaratan Allah'ın ilham ettiği kurallara göre hareket etmektedir.
Bitkilerin hareketleri de diğer tüm özellikleri gibi, onlar için en ideal şekilde tasarlanmış mekanizmalar sayesinde gerçekleşir. Bu mekanizmaları meydana getirenlerin bitkiyi oluşturan şuursuz atomlar olamayacağı açıktır. Hiçbir atom, bitkinin köklerinin suyun bulunduğu yönde gelişmesini, bitki filizinin ışığa doğru yönelmesini düşünüp akıl edemez. 21. yüzyılda, bilim adamlarının dahi nasıl işlediğini yeni yeni öğrendikleri bu sistemler, milyonlarca yıldır her bitkinin gövdesinde görevlerini hiç aksatmaksızın, Allah'ın yaratışına uygun olarak yerine getirmektedirler.


Turgor hareketleri

Turgor basıncı, bitki içerisinde biriken suyun, hücre duvarlarına yaptığı basınçla ortaya çıkar. Bu su basıncı bir kas etkisi yaparak bitkinin dik ve dolgun gözükmesini sağlar. Sulanmayan çiçeklerin canlılıklarını kaybedip eğilmelerinin sebebi budur. İşte belirli bir uyarıya karşılık olarak ortaya çıkan bazı bitki hareketleri, yapraktaki bu turgor (şişkinlik) basıncının kaybedilmesinin sonucudur. Bu duyarlı bitkiler, çok hızlı solma sürecine sahiptirler. Dokunulduğu zaman bütün yaprak aniden sarkar. Bir yaprak büküldüğü an, uyarı bütün yapraklar bükülene kadar bitkinin tamamını dolaşır. Bu mekanizmada hem elektriksel hem de kimyasal işlemler birarada meydana gelirler. Yaprakçıkların altında "pulvinus" adında, yastığa benzer destek çıkıntıları vardır. Bir yaprak, dokunma, ısı veya rüzgar uyarısı aldığında, potasyum iyonlarının bir pulvinustan diğerine dolaştığı zincirleme bir reaksiyon başlar. Bunu ise, pulvinusun bir yarısındaki "parankima" hücrelerinde bulunan su moleküllerinin diğer yarıma doğru başlattıkları hızlı bir mekik hareketi izler. Bu hareket suyun sebep olduğu şişkinlik basıncının kaybına, dolayısıyla bütün yaprağın eğilmesine yol açar. Bütün işlem birkaç saniye içinde gerçekleşir.59
Bu basınç değişimi bazı etçil bitkilerin kurdukları tuzağın kapanmasına yol açan sistemde de kullanılmaktadır.60 İnsan vücudundaki kaslar ne kadar önemli bir görev görüyorsa, bitkilerde de bu basınç çok önemli bir görev görmektedir. Metrelerce yükseklikteki ağaçların en tepelerinde bulunan yapraklara bitki gövdesindeki özel kanallarla hayret verici bir mekanizma kullanılarak çıkarılan su, kendisi için ayrılmış boşlukları doldurur. Yaprak mumsu dokuyla kaplı olduğu ve gözenekleri de sadece belirli miktarlardaki basınçlarda açıldığı için, hiç hava geçirmeyen bir balon gibi şişer. İnsan vücudunda sayısız doku, sinir, lif yapıları kullanılarak tasarlanmış olan kas sistemi, bitkide suyun basıncına göre dizayn edilmiş organlar kullanılarak tasarlanmıştır. Suyu kökten, henüz tam olarak keşfedilemeyen ama hidrofora benzer bir sistemle emen lifler, suyu bitkinin her parçasına taşıyan boru hatları, havadaki ve topraktaki uygun nem oranları, yaprakta suyu depolayan ya da fotosentez için kullanan organlar, harikulade bir tasarımın bölümlerini meydana getirirler.
Bu sistem ilk yaratılan bitkiden itibaren aynı şekilde işlemektedir. Bu sisteme ait tek bir organ olmadığında bitki yaşayamaz. Dolayısıyla hiçbir bitki evrimcilerin iddia ettiği gibi kademeli olarak evrimleşmiş olamaz. Tüm bu bilgiler, bitkilerin tüm parçaları, yapıları ve hücreleriyle birlikte, bir bütün olarak tasarlandıklarını ve yaratıldıklarını göstermektedir.


Bitki İçindeki Haberleşme

Yakın zamanda, aynı ağacın farklı dallarında daha önce fark edilmemiş olan bir ilişki olduğu botanikçilerin dikkatini çekti. Örneğin bir çam ağacının en üst kısmı kesilince, hemen alttaki yan dalların kaybolan kısmı tamamlar gibi yukarı doğru eğildikleri ve birkaç büyüme dönemi içinde yukarı doğru tırmandıkları gözlendi. Daha önce yan dal olan bu parçalar, ağacın üst kısmını oluşturması için dallardan birinin daha fazla büyümesine imkan tanırlar ve bunun için kenara doğru açılırlar. Seçilen dal sanki kendisinin bunun için seçildiğini biliyormuş gibi, dalların ortasına yani merkez pozisyona hakim olarak yönelir. Peki diğer dallar, bu dalın ağacın tepesini oluşturmak için seçildiğini nereden bilmektedirler? Hangi dalın nasıl seçildiği ve diğerlerinin bu seçime neden ve nasıl uydukları bilim adamlarını düşündürmeye devam etmektedir. Onların emin oldukları tek şey dalların arasında anlamadıkları bir çeşit ortaklığın olduğudur.61
Aslında sadece dallar arasında değil organizmanın tamamında bir ortaklık vardır. Başka bir örnek de ağaçların içindeki görev dağılımıdır. Söğüt ağacı gibi belli bir cins ağacın dallarından herhangi birini baharda kesip nemli toprağa ekerseniz, kök ve filiz çıkarır. Bu yalnızca bir organizma değil, aynı zamanda bir organizasyondur. Köklerin hangi bölgeden çıkartılması gerektiği, filizin hangi bölgeden sürgün vermesi gerektiği bitki hücreleri tarafından adeta bilinmektedir. Ağacın küçük bir parçası bile, ağaca dair bütün ayrıntıları bilircesine hareket eder.
Bitkiler üzerinde yapılan araştırmalar çok önemli bir mucizenin de ortaya çıkmasını sağlamıştır. Şuursuz bitkilerin şuursuz hücreleri arasında kurulu bir haberleşme sistemi vardır. Tıpkı insan ve hayvan hücreleri gibi bitki hücreleri de birbirleri ile haberleşmekte ve böylece toplu olarak hareket etmektedirler.


Hormonlar

Hormon, canlılarda yaşam için gerekli olan sistemleri düzenleyen bir protein türüdür. Bitki hücrelerinde de çeşitli hormonlar üretilir. Bu hormonlar bitkinin karşılaştığı iyi veya kötü koşullarda nasıl davranılması gerektiğini belirlemek için yaratılmış mucizevi moleküllerdir.
Örneğin yeni filizler iyi durumda, ama kök zor durumdaysa (bol ışık ama az su olduğu bir ortam) bitkinin daha güçlü ve daha çok köke ihtiyacı var demektir. Bitkinin içine öyle mükemmel bir sistem yerleştirilmiştir ki, gerekli önlem hemen alınır. Bitki hücreleri "auksin" isimli bir hormonun üretimini artırırlar. Bu hormon kök hücrelerine ulaşır ve bu hücrelere bölünmelerini ve çoğalmalarını emreder. Böylece yeni kökler üretilir.62
Bütün bu bilgiler karşısında bazı sorular sormak gerekir. Auksin hormonunu üreten hücreler, bitkinin toprağın altında kökleri olduğunu ve bu köklerin uzamaları gerektiğini nereden bilirler? Bu köklerin uzamasını sağlayacak kimyasal formülleri nereden öğrenmişlerdir? Kök hücreleri niçin bu hormonun emirlerine uyarlar?
Şuursuz bitki hücrelerinin birbirleri ile haberleşmeleri düşünen insanlar için sergilenmiş çok büyük bir yaratılış mucizesidir.
Hormonlar bitki içinde, sanki fabrika yöneten birer sorumlu müdür gibi görevler almışlardır. "Şeker nereden nereye taşınacak? Hangi yaprak yaşlanıp dökülecek, hangi yaprak beslenecek? Dallar daha ne kadar uzayacak? Çiçek açma vakti geldi mi?" gibi karmaşık sorunları bu gözle görülmeyen canlılar büyük bir ustalıkla çözerler.
Dalların uzamasını kontrol eden gibberellin isimli hormon da 50 farklı çeşidiyle önemli hormonlar arasındadır. Sitokinin adlı hormon ise auksinden çok daha uzak bir bölgeye etki eder. Auksin hormonu köklere etki ederken, sitokinin bitkinin tomurcuklarına etki eder. Tomurcuğun şeklinden de bu hormonun sorumlu olduğu kabul edilir.63 Burada tekrar düşünmek gerekir. Şuursuz bitki hücrelerinin ürettiği şuursuz bir molekül, sayısız hikmet ile yaratılmış bulunan tomurcukların üretiminden sorumlu kabul edilmektedir.
Bütün fotosentez aşamalarını da yöneten bu hormonların esas hayret verici özellikleri ise, merkezi bir sisteme bağlı olmadıkları halde, sanki tek bir yerden emir alıyormuş gibi akıllı ve bilinçli bir şekilde hareket etmeleridir.


Auksin adlı mucize

Toprağa atılan küçük bir tohum, birkaç yıl içinde bir fidan, bir süre sonra insan boyunda bir ağaç, onlarca yıl sonra dev bir çınar olur. Peki bitkinin büyümesini ve aynı zamanda orantılı ve estetik olarak gelişmesini sağlayan nedir?
Şuursuz bir bitkinin büyümesinin sorumluluğu bir başka şuursuz varlığa, "auksin" hormonuna verilmiştir. Bu yüzden auksin bitkinin gelişen bölgelerinde daha çok bulunur. Auksin hormonu hayret verici bir şuur ile hareket eder. Auksin, dalları yerçekimine karşı yukarıya, ışığa doğru (fototropizm); kökleri ise yerçekimi yönünde aşağıya doğru yönelterek büyümeyi gerçekleştirir. Hücre bölünmesi, hücrelerin belirli görevlere göre dağılması ve değişiklik göstermeleri, meyve gelişimi, kesik noktalardan kök oluşumu ve yaprak dökümü bu hormonun sorumluluğundadır. Bitkinin büyümesinde ve gelişmesinde birçok açıdan anahtar rol oynayan auksin hormonu gizemli yapısıyla araştırmacıların ilgi odağı olmuştur.
Bitkinin büyümesinde bir karar merkezi gibi çalışan, bitkinin ne yönde, ne kadar gelişeceğini kontrol eden bu hormonu neyin kontrol ettiğini bulmaya çalışan araştırmacılar içinden çıkılmaz bir problemle karşı karşıya kalmışlardır. Diğer bir soru da bitkinin bütün parçalarının bu maddenin sözünü neden dinlediğidir. Aslında bitki içindeki, ancak disiplinli bir orduda rastlanabilecek bu mükemmel karar ve uygulama mekanizması, sadece tek bir gerçeğin kanıtıdır. Bitki de diğer canlılar gibi yaprağından köklerine varıncaya dek Yaratıcısına boyun eğmiş durumdadır. Kuran'da bu gerçek şöyle bildirilmektedir:

... O'nun, alnından yakalayıp-denetlemediği hiçbir canlı yoktur. Muhakkak benim Rabbim, dosdoğru bir yol üzerinedir (dosdoğru yolda olanı korumaktadır.)" (Hud Suresi, 56)

Göklerde ve yerde her ne varsa -isteyerek de olsa, istemeyerek de olsa- Allah'a secde eder. Sabah akşam gölgeleri de (O'na secde eder). (Rad Suresi, 15)

SONBAHAR RENKLERİ


Sonbahar gelince ilginç bir olaya şahit oluruz. Ağaçların yeşil yaprakları birkaç gün içinde renklerini değiştirir, kısa bir süre sonra da bütün yapraklar dökülür ve ağaç dalları çıplak kalır. İlkbaharda yeniden dirilene kadar ağaç artık ölmüş sayılır. Çünkü bütün yaşamsal fonksiyonlarını minimuma indirmiştir. İnsana ölümü hatırlatan ve ayette belirtildiği gibi öldükten sonra dirilişin bir delili olan yaprak dökümü, birçok mucizevi olayın gerçekleştiği bir dönüşümdür. Allah Kuran'da bu durumu şöyle bildirir:

O ölüden diriyi çıkarır ve diriden ölüyü çıkarır, ölümünden sonra da yeri diriltir. İşte siz de böyle çıkarılacaksınız. (Rum Suresi, 19)

Yaprak tamamen ölüp ağaçtan düşmeden önce çeşitli aşamalardan geçer. Çok sayıda kimyasal bileşik biraraya gelip farklı sistemleri devreye sokarak yaprağı gövdeden ayırır. Bunu yaparken de hiçbir maddeyi israf etmeden, dökülme işlemini hem bitki hem de çevre için çok faydalı bir süreç haline getirir. Böylece sonbahar yaprakları bize ölümü ve yeniden dirilişi hatırlatmakla kalmaz, Allah'ın sonsuz ilim ve kudretini bir kez daha gözler önüne serer.


Yaprakların Renklenmesi

Yazın yaprakların rengine pek dikkat etmeyiz; ama sonbahar gelince aniden renk değişiminin farkına varırız. Çünkü yaprakların renklerinin değişmesi ve dökülmesiyle karşımıza rengarenk manzaralar çıkar. Yemyeşil ağaçlar birkaç günde sarı, kırmızı, kahverengi renklere dönüşür. Peki ama yapraklar neden renk değiştirir ve neden dökülürler?
İster sarı, kırmızı, ister mor ya da yeşil olsun bütün yapraklar ihtiva ettikleri çeşitli pigmentler tarafından renklenirler. Bitki pigmentleri arasında en çok bilinen hiç kuşkusuz kitap boyunca da yer verildiği gibi yapraklara yeşil rengini veren ve fotosentezde önemli bir rol oynayan, klorofildir. Ilıman iklimlerde sonbahar geldiğinde yaprakların rengi değişmeye başlar. Yapraklarda ortaya çıkan ve yeşilin yerini alan sarı, turuncu, kırmızı ve en sonunda kahverengi renkler, sarı ve turuncu pigment olan 'karoten'in eseridir. Bunun yanında "antosiyanin" adlı pigment de bu işle görevlidir. Bu üç pigment, bildiğimiz yaz çiçekleri de dahil olmak üzere yapraklara renklerini kazandıran maddelerdir.
Yeşil yapraklardaki klorofilin yeşilliği o kadar güçlüdür ki, yapraklarda bulunan karotenlerin sarı ve turuncu renklerini tamamen gölgeler. Sonbaharda yaprakları dökülen bitkiler yapraklarını dökmeden önce yapraklarındaki yararlı malzemeleri geri alırlar. Bu geri alma işleminin sonuçlarından biri olarak klorofil bozulmaya başlar. Bu aşamada klorofil baskın olduğu için renkleri ortaya çıkmayan sarı ve turuncu pigmentlerin etkisi ortaya çıkar.
Yaprakların ömrü dolunca, antosiyanin pigmenti çoğalmaya başlar; normal yeşili hafifçe kırmızı-mora doğru boyar. Antosiyanin pigmentleri renk olarak kırmızıdan mora değişim gösterirler ve kırmızı, mavi ve mor renkli bitki bölümlerinden tamamen onlar sorumludur. Isı düşük olduğunda bitki aşırı parlaklığa maruz kalınca bitkilerin büyük bir bölümünde antosiyanin seviyesi artmaya eğilimlidir. Sonbaharda bazı bitkilerde kırmızının artmasının sebebi budur. Bu pigmentler genellikle sarıdan turuncu ve kırmızıya doğru renk değiştirirler. Sonbahar hava koşullarına ek olarak renk gelişimi büyük ölçüde bitkinin türüne bağlıdır. İşte sonbahar manzaraları dediğimiz çarpıcı güzellikteki görüntüler bu pigmentlerin eseridir.64


Yaprakların Dökülmesi
Yaprakların dökülmesinin bir faydası var mıdır?

Her sene milyonlarca yaprak dökülmekte, ilkbahar gelince yeniden çıkmaktadır. İlk bakışta milyonlarca yaprak boşuna dökülüyor gibi gözükebilir. Ancak bu bir yanılgıdır, çünkü yaprakların dökülmesi ekolojik sistemde önemli yere sahip bir değişimdir. Hiçbir şey boş yere yaratılmamıştır. Biz hangi sistemi veya hangi canlıyı incelersek inceleyelim onun yaratılışında bir amaç ve bir hikmet olduğunu görürüz. Düşen yapraklar da bu mükemmel sistemin bir parçasını oluştururlar. Dökülen yaprakların en büyükleri toprağı besinle doldurur. Ayrıca düşen yapraklar orman tabanında bir humus tabakası oluşturarak yağmuru tutmaya ve emmeye yardımcı olurlar, birçok canlı dış etkenlerden kurtulmak için yaprakların altına saklanırlar. Son olarak, düşen yapraklar ormandaki birçok organizma için besin kaynağı haline gelir.
Her yıl, yaprak dökümü ile birlikte, Dünya yüzeyinde 300 milyon ton klorofil toprağa karışır. Klorofil taşıyan deniz yosunlarının ömrünün kısa olduğu okyanuslarda yılda 900 milyon ton klorofil parçalanır. Her sene bu miktarda klorofil kaybı olmasaydı ortaya çok vahim sonuçlar çıkardı. Gittikçe artan klorofil miktarı canlı hücrelerin daha az, serbest klorofillerin ise daha çok güneş ışığı kullanmasına yol açacaktı. Sonuçta yetersiz miktarda ışık alan canlı hücreler daha az fotosentez yapacak, bu olayın sonucunda da okyanusta ve buna bağlı olarak bütün dünyada canlılık sona erecekti.
Dökülecek olan yapraklarda meydana gelen en ilginç olaylardan biri, bu yapraklarda son derece bilinçli bir sökme-ayırma işleminin gerçekleşmesidir. Yaprak dökülmeden önce protein ve karbonhidrat gibi kullanılabilir maddeler bitkinin gövdesine depolanır. Böylece dökülecek olan yaprak bu maddeleri boş yere harcamamış ve gelecekteki yapraklar için gerekli malzemenin önemli bir bölümünü temin etmiş olur. Bu örneklerden de anlaşılacağı gibi klorofilin gerektiği anda elimine edilmesi veya bitkinin ihtiyaç duyduğu maddeleri gövdesinde toplaması yeryüzünde hayatın devamı için ekolojik bir zorunluluktur. Yapraklardaki yaşlanmanın ilk işaretlerinden biri, yaprak ayası hücrelerinde etilen gazının üretiminin başlamasıdır. Bir süre sonra etilen gazı yaprağın her tarafına yayılır ve yaprak sapına geldiğinde burada bulunan küçük hücreler şişmeye başlayıp, sapta bir gerginleşmeye neden olurlar. Yaprak sapının gövdeye bağlandığı bölümde bulunan hücrelerin miktarı artar ve özel enzimler üretmeye başlarlar. İlk olarak selüloz enzimleri selülozdan oluşan çeperleri parçalar. Daha sonra pektinaz enzimleri hücreleri birbirine bağlayan pektin tabakasını parçalar. Giderek artan bu gerginliğe yaprak dayanamaz ve sapın dış tarafından içeriye doğru yarılmaya başlar.
Yaprak sapının gövdeye bitiştiği yerde yani yaprak tabanında bir ayırma bölgesi meydana gelir. Bu tabaka yaprak düşmeden çok önce oluşur. Sonra bu tabakadaki "parankima" adı verilen ve değişim geçirebilen özel doku hücrelerinin çeperleri yumuşamaya başlar ve kimyasal değişim geçirerek jelimsi bir durum alır. Bu, hücrelerin birbirinden ayrılmasına neden olur ve yaprak yalnız sıvı maddelerin geçişini sağlayan tüpe benzer yapılarla gövdeye bağlı kalır. Genişlemeye devam eden yarığın etrafında çok hızlı değişimler yaşanır ve hücreler hemen mantar özü üretmeye başlarlar. Bu madde, selüloz çepere yavaş yavaş yerleşerek onun güçlenmesini sağlar. Bütün bu hücreler, arkalarında büyük bir boşluk bırakarak ölürler. Hafif bir rüzgarla yapraklar kopar. Ancak bu sırada mantar hücrelerinden ibaret koruyucu bir tabaka gelişerek açılan yarayı kapatır. Bu fiziksel ve kimyasal değişimler sadece bir yaprakta değil, dökülen bütün yapraklarda meydana gelen ve çok ince planlanmış bir süreçtir. Bu sistem zamanı geldiğinde yaprağın kopmasını sağlamak için yaratılmıştır.



FOTOSENTEZ


Fotosentez, Allah'ın sonsuz ilmine ve kudretine yakından şahit olmak isteyen her insanın yakından incelemesi gereken olağanüstü bir kimyasal işlemdir. Fotosentez, bilim adamlarının bugün bile tam olarak çözemedikleri eşsiz bir tasarımdır. Bu işlemi çıplak gözle asla göremeyiz, çünkü bu mekanizma çalışmak için elektronları, atomları ve molekülleri kullanır. Ancak, fotosentezin sonuçlarını nefes almamızı sağlayan oksijen ve hayatta kalmamızı sağlayan besinlerde görebiliriz. Fotosentez anlaşılması zor kimyasal formüller, hiç karşılaşmadığımız küçüklükte sayı ve ağırlık birimleri içeren çok hassas dengeler üzerine kurulmuş bir sistemdir. Etrafımızdaki bütün yeşil bitkilerde, bu işlemin gerçekleştiği kimya laboratuvarlarından trilyonlarcası kurulmuştur ve milyonlarca yıldır hiç durmadan ihtiyacımız olan oksijeni, besinleri ve enerjiyi üretmektedirler.
Muhteşem bir tasarım olarak karşımıza çıkan fotosentezi daha yakından incelediğimizde, yaratılışın en önemli delillerinden birini daha tanımış olacağız. O halde, şimdi gözle görülmeyecek kadar küçük bir yerde meydana gelen bu işlemi daha yakından inceleyelim.


Fotosentezin Yeryüzündeki Hayat İçin Önemi

Fotosentez işleminin nasıl gerçekleştiğini incelemeden önce, bu işlemin dünyadaki canlı yaşamı için ne kadar önemli bir süreç olduğunu anlayabilmek gerekir. Gözle görülmeyecek kadar küçük bir yerde oluşan bu işlemin tüm canlılara kadar uzanan sonuçlarını genel başlıklar altında inceleyelim:


Fotosentez ve oksijen

Bitkiler fotosentez yaparken havadaki karbondioksidi yani insanın kullanmadığı zararlı gazı alır ve onun yerine atmosfere oksijen bırakır. Nefes aldığımızda içimize çektiğimiz ve asıl hayat kaynağımız olan oksijen, fotosentezin ana ürünüdür. Atmosferdeki oksijenin yaklaşık %30'u karadaki bitkiler tarafından üretilirken, geri kalan %70'lik bölüm denizlerde ve okyanuslarda bulunan ve fotosentez yapabilen bitkiler ve tek hücreli canlılar tarafından üretilir. Burada dikkat çekici olan, insanlar doğadaki bitkileri devamlı yok ederken, oksijenin ana kaynağı olan okyanusları aynı hızla yok edememektedirler. Bu sayede fotosentez yapan farklı canlıların yaratılmış olması, bitip tükenmeyen bir enerji kaynağına sahip olmamızı sağlamıştır.


Fotosentez ve besinler

Biyolojik olarak ihtiyaç duyduğumuz bütün enerjiyi doğrudan veya otçul hayvanlar yoluyla bitkilerden alırız. Güneş ışını saf enerji kaynağıdır; ancak ham olarak o kadar da kullanışlı bir enerji şekli değildir. Bu enerjiyi yemek, vücutta doğrudan kullanmak ya da depolamak mümkün değildir. Bu yüzden güneş enerjisinin farklı bir enerji türüne çevrilmesi gerekir. İşte fotosentez bunu yapar. Bu işlem yoluyla bitkiler, güneş enerjisini daha sonra kullanabilecekleri bir enerji şekline dönüştürürler. Bu işlem yapraklardaki "fotosentetik reaksiyon" merkezlerinde meydana gelir. Burada güneş enerjisi kullanılarak havadaki karbondioksit, nişasta ve diğer yüksek enerjili karbonhidratlara dönüştürülür. Karbon kullanıldıktan sonra ortaya çıkan oksijen ise havaya bırakılır. Bitki daha sonra besine ihtiyaç duyduğunda bu karbonhidratlarda depoladığı enerjiyi kullanır. Elbette bu bitkilerle beslenen canlılar da bitkide bulunan karbonhidratlardan enerji ihtiyaçlarını karşılarlar. İnsanın ihtiyacı olan enerji de fotosentez yoluyla bu besinlerde depolanan enerji ile karşılanır. İleride de göreceğimiz gibi, fotosentez son derece kompleks bir işlemdir. Böyle kompleks bir işlem sonucunda tüm canlıların yaşamak için ihtiyaç duydukları besine sahip olmaları Allah'ın sonsuz ilminin ve aklının bir eseridir:

Ey insanlar, Allah'ın üzerinizdeki nimetini anın. Gökten ve yerden sizi rızıklandıran Allah'ın dışında bir başka yaratıcı var mı? O'ndan başka ilah yoktur. Öyleyse nasıl olur da çevriliyorsunuz? (Fatır Suresi, 3)


Fotosentez ve enerji

Arabanızın motoru güneş enerjisi ile çalışır. Jet uçakları güneş enerjisi sayesinde uçarlar. Siz de bu yazıyı okurken güneş enerjisi harcamaktasınız...
Elbette yukarıdaki satırları okuduğunuzda ilk aklınıza gelecek olan, arabanızın benzin ile çalıştığı, jet uçaklarının uçak yakıtı kullandıkları olacaktır. Bu yazıyı okumak için ihtiyacınız olan enerjiyi de Güneş'ten değil, en son öğünde yediğiniz besinlerden aldığınızı düşüneceksiniz. Oysa benzin de, yediğiniz besinler de, hatta yakacak olarak kullanılan odun ve kömür de fotosentezden elde edilen enerjiye sahiptirler. Nasıl mı?
Bundan milyonlarca sene önce fotosentez yaparak güneş enerjisini bünyelerinde depolayan bitkiler ve bu bitkileri yiyen hayvanlar, toprağın derinliklerinde, yüksek basınç altında, milyonlarca sene bekledikten sonra bildiğimiz "petrol"ü meydana getirmişlerdir. Kömür ve doğalgaz da yine aynı şekilde oluşmuştur. Kısacası fotosentez sayesinde bitkilerde depolanan güneş enerjisi milyonlarca yıl sonra insanların hizmetine bir başka yolla verilmiştir.
Aynı şekilde yediğiniz besinlerden elde ettiğiniz enerji de, bitkilerin depoladıkları güneş enerjisinden başka bir şey değildir. Hayvansal gıdalardan elde ettiğiniz enerji de, yine o hayvanların bitkilerden elde ettikleri enerjidir. Enerjinin kaynağı her zaman Güneş, bu enerjiyi insanın kullanacağı hale getiren sistem her zaman fotosentezdir. Bu sistem dışında hiçbir sistem aracılığı ile sahip olduğunuz enerjiyi kazanamazsınız.


Fotosentez ve yan ürünler

Odun, sadece yakmak için değil, inşaat dahil birçok farklı alanda kullanılan çok önemli bir materyaldir. Örneğin kağıt, pamuk ve diğer doğal liflerin neredeyse tamamı fotosentezle üretilen selülozdan oluşur. Hatta yün üretimi bile fotosentezle gelen enerjiye bağımlıdır. Bütün bitkisel, hayvansal ve petrol gibi organik maddelerden elde edilen sayısız yan ürünün kaynağı fotosentezle işlenen güneş enerjisidir.65


Fotosentez ve çevre

Canlılar, havadaki karbondioksitin ve havanın ısısının sürekli olarak artmasına neden olurlar. Her yıl insanların, hayvanların ve toprakta bulunan mikroorganizmaların yaptıkları solunum sonucunda milyarlarca ton karbondioksit atmosfere karışır. Ayrıca, fabrikalarda ve evlerde kalorifer ya da soba kullanılarak tüketilen ve taşıtlarda kullanılan yakıtlardan atmosfere verilen karbondioksit miktarı da milyarlarca tonu bulmaktadır. Yapılan bir araştırmaya göre, son 22 yılda atmosferde görülen karbondioksit artışı 42 milyar tondur. Bu artışın en önemli nedenlerinden biri ise kullanılan yakıtlar ve orman tahribatlarıdır. Son 22 yılda yakıtların neden olduğu karbondioksit artışı ise 78 milyar tondur.66
Bu artış dengelenmediği takdirde ekolojik dengelerde bozulma meydana gelecektir. Böyle bir durumda atmosferdeki oksijen miktarı çok düşük seviyelere inecek, yeryüzünün ısısı artacak; bunun sonucunda da buzullarda erime meydana gelecektir. Bundan dolayı bazı bölgeler sular altında kalırken, diğer bölgelerde çölleşmeler meydana gelecektir. Bütün bunların bir sonucu olarak yeryüzündeki canlıların yaşamı büyük bir tehlikeye girecektir. Oysa durum böyle olmaz. Çünkü bitkilerin ve mikroorganizmaların gerçekleştirdiği fotosentez işleminde sürekli olarak karbondioksit tüketilir ve oksijen üretilir. Bu şekilde de denge korunmuş olur. Yukarıda da belirtildiği gibi, sadece yakıtların neden olduğu karbondioksit artışı 78 milyar ton iken, atmosferde kalan karbondioksit 42 milyar tondur. Bu karbondioksit fazlası, büyük ölçüde fotosentez yoluyla ve okyanuslar aracılığı ile atmosferden temizlenmiştir.
Yeryüzünün ısısı da belli bir aralık içinde sabittir, çok büyük ısı değişimleri yaşanmaz. Çünkü yeşil bitkiler ısı dengesini de sağlarlar.
Yeryüzündeki canlı yaşamı için son derece hayati olan bu dengelerin devamlılığını sağlayan, fotosentez işlemidir. Atmosferdeki oksijen miktarının korunması için de başka bir mekanizma yoktur.
Sonuç olarak fotosentezin ne kadar önemli bir mucize olduğu ve hayatımızı ne kadar yakından etkilediği ortadadır. Bu mükemmel sistem, henüz içinde bulunduğumuz yüzyılda keşfedilmiştir. Her aşaması hayret verici mucizelerle dolu bu mekanizmanın şu ana kadar keşfedilmiş aşamalarını incelemek, Allah'ın sonsuz ilmine açılan bir kapı olacaktır.
FOTOSENTEZ MAKİNASI


Bilindiği gibi fotosentez, bitkilerin, kimi zaman da bazı bakteri ve tek hücreli canlıların, karbondioksit ve sudan, şeker (karbonhidrat) üretmek için güneş ışınıyla gelen enerjiyi kullanmalarıdır. Bu reaksiyon sonucunda güneş ışınındaki enerji, üretilen şeker molekülünün içine depolanmış olur. Kullanılamayan güneş enerjisinin kullanılabilir kimyasal enerjiye dönüşme işleminde ise yeşil bir pigment olan klorofil önemli rol oynar. (Pigment ışığı emebilen maddelere verilen addır.)
Bütün reaksiyon aşağıdaki formülde özetlenir:

6H2O + 6CO2 ---FOTOSENTEZ---> C6H12O6+ 6O2

Kimya diline yabancı olanlar için, bu kimyasal formül şu şekilde tercüme edilebilir:

6 su molekülü + 6 karbondioksit molekülü -FOTOSENTEZ SONUCUNDA- 1 şeker molekülü + 6 oksijen molekülüne dönüşür.67

Fotosentezin genel şeması oldukça basit gözükmektedir. Fakat bu şema yalnızca başlangıçta reaksiyona giren ve reaksiyon sonucunda elde edilen maddeleri göstermektedir. Bu nihai ürünlerin elde edilmesi ise yaprakta meydana gelen ve hayranlık uyandıracak derecede kompleks işlem ve mekanizmalar sonucunda gerçekleşir.
Karbondioksit ve su kullanarak, günlük hayatta şeker dediğimiz karbonhidrat moleküllerinin oluşturulması için son derecede hassas ve kompleks ölçülerin ve işlemlerin gerçekleştirilmesi gerekir. Bu işlemler atomlar, hatta atomların çevresinde dönen elektronlar düzeyinde işleyen çok kompleks sistemleri içerir.
Sistem içinde farklı pigmentler, çeşitli tuzlar, mineraller, kalıntı elemanlar (ferredoksin, adenosin trifosfat gibi), alt-katalizörler, çeşitli görevler üstlenen maddeler ve diğer kimyasal etkenlerden oluşan kalabalık bir ekip vardır. Sadece "sakaroz" gibi basit bir şeker molekülünü üretmek için bile bitkilerin 30 adet farklı proteine ihtiyaçları olduğunu düşünürsek, bu işlemin genelinin ne kadar kompleks olduğu daha iyi anlaşılır.


Fotosentez İşleminde Yer Alan Parçalar

- Kloroplast: Bitki hücresiyle hayvan hücresi genel olarak aynı özellikleri taşımaktadır. Bu iki canlı türünün hücreleri arasındaki en önemli fark, bitki hücresinde artı olarak, içinde fotosentezin gerçekleştiği yeşil bir deponun (plastid) yani kloroplastın bulunmasıdır. Seyyar bir enerji santrali gibi güneş ışığını emen klorofilleri saklayan bu organizmalar bütün sistemin kalbidir. Kloroplastlar, iç içe geçmiş balonlara benzeyen yapılarıyla, doğanın yeşil rengini verirler.
Bitki hücresinde, fotosentez işlemi kloroplastlarda meydana gelir. Kloroplast 2-10 mikrometre kalınlığında (mikrometre metrenin milyonda biridir), 0,003 milimetre (milimetrenin binde üçü) çapında mercimek şeklinde küçük disklerden oluşmuştur. Bir hücrede 40'a yakın kloroplast vardır. Bu ilginç birimler bu kadar küçük olmalarına rağmen bulundukları ortamdan iki zarla ayrılmışlardır. Bu zarların kalınlığı ise akıl almayacak kadar incedir: 60 angström, yani 0,000006 milimetre.68 (milimetrenin yaklaşık yüzbinde biri)
Kloroplastın içinde "tilakoid" adı verilen yassılaşmış çuval şeklinde yapılar vardır. Bunlar fotosentezin kimyevi birimleri olan klorofilleri muhafaza eder ve daha ince zarlarla korunurlar. Bu tilakoidler, "grana" adı verilen 0,0003 milimetre büyüklüğünde ve madeni para şeklinde üst üste yığılmış diskler olarak dizilmişlerdir. Bir kloroplast içinde bu granalardan 40-60 adet bulunur. Bütün bu karmaşık yapılar, protein ve yağların belirli bir amaç için biraraya gelmeleriyle oluşur. Bunlar da belirli oranlarda bulunurlar. Örneğin tilakoid zarı %50 protein, %38 yağ ve %12 pigmentten oluşmuştur.69
- Tilakoid: Kloroplastın içindeki ikinci aşama tilakoid adı verilen torbalardır. Bunlar çuvala benzeyen ve içinde klorofil molekülünü saklayan zarlardır. Bu torbaların içinde güneş ışığını emen yeşil pigment olan klorofil bulunur.
- Grana: Tilakoidler biraraya gelerek granaları oluştururlar.
- Klorofil: Kloroplastın içinde bulunan ve güneş ışığını emen yeşil pigmenttir. Klorofil olmasaydı, ne oksijen, ne besin, ne de doğanın rengi olurdu.
- Stroma lamella: Kloroplast içinde granaları bağlayan boru şeklindeki zar.
- Stroma: Kloroplastın içindeki jele benzeyen sıvı.


Fotosentez Ve Işık

Atmosfer, gerek fonksiyonları gerekse kimyasal bileşimiyle yaşam için zorunlu, mükemmel bir örtüdür. Güneş, çok farklı dalga boylarında ışığı yayar. Ancak bu dalga boylarından sadece çok dar bir aralık yaşam için gerekli olan ışığı içerir. Ve bu noktada önemli bir mucize görülür; atmosfer öyle bir yapıya sahiptir ki, sadece yaşam için gerekli olan aralıktaki ışığın geçmesine izin verirken, yaşam için zararlı olan X ışınlarını, gama ışınlarını ve diğer zararlı tüm ışınları emer ya da geri yansıtır. Yaşam için son derece önemli olan bu seçilimden sorumlu olan atmosfer tabakası ise, kimyasal formülü O3 olan "ozon tabakası"dır. Ozon tabakasının evrendeki diğer 1025 adet farklı dalga boyuna sahip ışın cinsi arasından, yalnızca yaşam için gerekli 4500 - 7500 A0 aralığındaki görünür ışığı geçirmesi bizim için özel tasarlanmış bir mucize olduğunun göstergesidir.70 Eğer atmosfer bu aralıkta bulunan ışığı geçirmeseydi veya bu ışıkla birlikte farklı dalga boylarındaki ışıkları da geçirseydi, yeryüzünde canlılık kesinlikle oluşamazdı. Bu, canlılığın oluşması için gereken yüzbinlerce koşuldan sadece bir tanesidir ve bu koşulların tamamının eksiksiz olarak oluşması, canlılığın tesadüfen meydana gelmesinin kesinlikle imkansız olduğunu gösterir.

Farklı dalga boyundaki ışıklar farklı renkler demektir

Gördüğümüz bütün renkler belirli bir dalga boyuna ve frekansa sahiptir. Örneğin kırmızının dalga boyu mordan uzundur. Bizim renkleri görebilmemizin sebebi ise gözlerimizin bu hassas dalga boylarını algılayacak ve beynimizin de bunları yorumlayacak şekilde yaratılmasından kaynaklanır.
Işığın dalga boyu "nanometre" adı verilen bir birimle tanımlanır. Bir nanometre ise metrenin milyarda birine eşittir. Örneğin kırmızının dalga boyu 770, koyu morun ise 390 nanometredir.71 Ancak bu o kadar küçük bir birimdir ki, insanın gözünde canlandırabilmesi kesinlikle imkansızdır. Bu ışıkların bir de frekansları vardır. Bu frekans "hertz" veya saniyedeki devir sayısıyla ölçülür. Bir devir ise dalganın en üst ve en alt noktası arasındaki mesafedir. Işık saniyede 300.000 km yol alır. Eğer dalga boyu daha küçük ise fotonlar aynı sürede daha fazla mesafe kat etmek zorunda kalırlar.
Buraya kadar anlatılan özelliklerden anlaşılacağı gibi bitkinin kullandığı ışık çok özel bir yapıya sahiptir. Bu ışık, hem atmosferde hassas bir elekten geçirilerek süzülür, hem bizim algılayamayacağımız kadar küçük bir mesafe aralığında hareket eder, hem de bilinen en büyük hıza sahiptir. Ayrıca hem dalga olarak hem de foton denilen tanecikler şeklinde hareket ettiği için maddeleri oluşturan atomlara çarparak kimyasal reaksiyonlara sebep olma özelliğine de sahiptir.
Bu kadar kompleks bir yapıya sahip olan ışık büyük mesafeler katedip bitkiye ulaştığında, özel bir anten sistemi tarafından algılanır. Bitkide bulunan bu anten sistemi o kadar hassas bir yapıya sahiptir ki, sadece bu çok küçük bir dalga aralığında bulunan ışığı yakalayacak ve bu ışığı işleyecek sistemleri başlatacak şekilde yaratılmıştır. Eğer ışık herhangi başka bir değere, hıza veya frekansa sahip olsaydı, pigment (bitkinin anteni) bu ışığı göremeyecek ve işlem daha başlamadan sona erecekti.72 Pigment ve ışık arasındaki uyum, çok sık karşılaştığımız özel yaratılış örneklerindendir. Örneğin kulak ve ses dalgası, göz ve ışık, besinler ve sindirim sistemi gibi sayısız uyumlu yaratılış örneği mevcuttur. Ne ışık kendi dalga boyunu ayarlar ne de pigment algılayabileceği ışık boyunu seçme şansına sahiptir. Açıktır ki, ikisi de bu sistem için özel olarak yaratılmışlardır.


Renkli bir dünyada yaşamamızı sağlayan mucize!

Işığı emen bütün maddelere pigment adı verilir. Pigmentlerin renkleri, yansıtılan ışığın dalga boyundan, başka bir deyişle madde tarafından emilmeyen ışıktan kaynaklanır. Bütün fotosentetik hücrelerde bulunan ve bir tür pigment olan klorofil, yeşil dışında, görünen ışığın bütün dalga boylarını emer. Yaprakların yeşil olmasının sebebi yansıtılan bu ışıktır. Siyah pigmentler kendilerine çarpan ışığın bütün dalga boylarını emerler. Beyaz pigmentler ise kendilerine çarpan ışığın neredeyse bütün dalga boylarını yansıtırlar.
Örneğin bitkilerdeki klorofil ismi verilen pigmentler hem yeşil rengin oluşmasını sağlayan, hem de fotosentezin gerçekleştiği yerlerdir. Pigment, karbon, hidrojen, magnezyum, nitrojen gibi atomların biraraya gelerek oluşturdukları moleküllerin gerçekleştirdikleri bir yapıdır. İşte bu tür bir pigment olan klorofil hayatın devamında çok önemli bir role sahip olan fotosentezi, hiç durmaksızın gerçekleştirir. Klorofil pigmentinin boyutlarını düşündüğümüzde konunun ne kadar ince ve hassas hesaplar üzerine kurulu olduğu daha iyi anlaşılacaktır.
250-400 kadar klorofil molekülü gruplar şeklinde organize olarak, "fotosistem" adı verilen ve çok hayati işlemler gerçekleştiren bir yapı oluştururlar. Bir fotosistem içindeki bütün klorofil molekülleri, ışığı emme özelliğine sahiptirler; ama her fotosistemde sadece bir klorofil molekülü gerçekten ışıktan elde edilen kimyasal enerjiyi kullanır. Enerjiyi kullanan molekül, fotosistemin ortasına yerleşerek, sistemin reaksiyon merkezini tespit eder. Diğer klorofil molekülleri "anten pigmentler" olarak adlandırılırlar. Klorofil a olarak adlandırılan reaksiyon merkezinin çevresinde anten benzeri bir ağ oluşturarak reaksiyon merkezi (yani klorofil a) için ışık toplarlar. Reaksiyon merkezi 250'den fazla anten molekülünün birinden enerji aldığında, elektronlarından biri daha yüksek bir enerji seviyesine çıkarak bir alıcı moleküle transfer olur. Yani klorofil a'ya ait olan bir elektron, etrafta dizilmiş bulunan diğer klorofil moleküllerine geçer. Bu sayede zincirleme bir reaksiyon ve elektron akışı dolayısıyla fotosentez de başlamış olur.73 Bu yüzden pigment dediğimiz organlar fotosentez işlevi içinde hayati bir rol oynamaktadırlar. Bu çok özel yapılı moleküller aynı zamanda çevremizdeki yeşil bitki dünyasını oluşturmaktadırlar.


Pigmentler Ve Evrimcilerin Akıl Dışı Senaryoları

Görünür ışık, pigmentlerin ortaya çıkardığı renkler ve bu milyonlarca tondaki renkleri algılayan gözlerimiz, Allah tarafından sonsuz bir ilim ve sanatla yaratılmıştır. Birisi olmadan diğerinin anlamını yitireceği bu sistemde renkler, ışık ve göz mükemmel bir uyum içindedir.
Bitkilerdeki pigmentin yaratılışında kullanılan malzeme insan gözündeki pigment olan retina için de kullanılmıştır. Ama aynı malzeme bitkide fotosentezi başlatırken, insan gözünde görüntüyle ilgili mesajları beyne iletmekle görevlendirilmiştir. Birkaç atomun birleşmesinden meydana gelen bir maddenin, bulunduğu yere göre farklı özelliklere ve görevlere sahip olabilmesi olağanüstü bir durumdur. Saatte 500 km hızla beyne mesaj ileten 600 bin sinirle beyne bağlı olan göz, aynı anda 1,5 milyon mesaj alıp bunları düzenler ve beyne gönderir.74 İnsan gözündeki kompleks sistem gibi pigmentlerin bitkide yaptıkları görev de çok karmaşık bir yapıya sahiptir. Evrimciler pigmentle ilgili sistemleri açıklarken sistemin kompleks yapısını ve her bir parçasının aynı anda yaratılmış olması gerektiğini hiç gündeme getirmezler.
Klasik evrim senaryosuna göre bitkiler güneş enerjisini kullanma ihtiyacı duymuş, bunun için de -her nasılsa- pigmentleri üretmişlerdir. Burada unutulmaması gereken, bu bitkilerin daha önceden pigment gibi bir yapıdan haberdar olmamaları ve pigment görevini gören bir sistemi de bilmiyor olmalarıdır. Evrimcilerin neyi savundukları burada açık bir biçimde ortaya konduğunda teorinin sahip olduğu mantık hezimeti de daha net karşımıza çıkar. Evrimcilere göre, hayatta kalmak için bir enerji kaynağı arayan, bir bilince ve akla sahip olmayan tek hücreli bir canlı nasıl olmuşsa Güneş'in ekonomik ve sürekli bir enerji kaynağı olduğunu tespit etmiştir. Sonra, bu enerjiyi nasıl kullanılır hale getirebileceğini 'düşünmüş' ve günümüzün bilim adamlarının dahi çözemediği sorunları çözerek, güneş enerjisini kimyasal enerjiye dönüştürebilecek bir anten sistemi planlamıştır. Bunun için Güneş'in uygun dalga boylarını, elektron akışını sağlayacak kimyasal formülleri çözdükten sonra üretim işine başlamış ve belirli kimyasalları hassas oranlarda biraraya getirerek pigmenti üretmiştir. İşte evrimcilerin akıl almaz senaryosu budur.
Bu senaryo akıl dışı olmasının yanında, birçok açıdan da çıkmaza girmektedir. Herşeyden önce, son zamanlarda yapılan çalışmalarda bitkilerin ortak bir atadan evrimleşmedikleri kesin olarak ortaya çıkmıştır. Evrimcilerin gerçek dışı iddialarına göre bunun bir anlamı da şudur: her bitki türü fotosentez sistemini ayrı ayrı, diğerlerinden bağımsız olarak geliştirmiştir. Bu hayal dünyasının sınırlarını iyice zorlayan bir senaryodur. Çünkü, tek bir bitkinin dahi fotosentez gibi, günümüzün ileri teknoloji ve bilim seviyesi ile taklit dahi edilemeyen kompleks bir sistemi tesadüfen elde etmesi imkansızdır. Bu imkansızlık açıkça ortada olmasına rağmen evrimciler, bu imkansızlığın defalarca tekrarlandığını iddia edecek kadar akıl ve mantığa aykırı düşünmektedirler. Oysa daha ileride de göreceğimiz gibi fotosentezin önemli bir parçası olan pigmentlerin oluşturduğu antenler ve onlara bağlı olarak çalışan sistemlerin tasarımı tesadüfle izah edilemeyecek kadar olağanüstü bir yapıyı ortaya koymaktadırlar.


Fotosentezi Etkileyen Faktörler

İleriki bölümlerde de göreceğimiz gibi fotosentez çok karmaşık ve hassas bir süreçtir. Fotosentezi yapan bitkinin her parçası bu iş için özel yapılara sahiptir. Ancak fotosentezin gerçekleşmesi için gerekli olan unsurlar bitkinin yapısıyla sınırlı değildir. Bitkinin yapısı dışında ihtiyaç duyulan faktörlerin en önemlilerinden biri de kuşkusuz ışıktır. Daha önce gördüğümüz gibi, Dünya'ya gelen ışığın dalga boyu ile bitkilerdeki anten ve pigment sistemi birbirleriyle mükemmel bir uyum içinde yaratılmışlardır. Ancak ışığın dalga boyu yanında, fotosentezi etkileyen başka dengeler de vardır.

1. Işığın şiddeti ve süresi
Fotosentez, ışığın şiddeti ve süresine bağlı olarak değişir. Ayrıca, ışığın doğrudan ya da dağılmış olarak gelmesi de fotosentez açısından önemlidir. Doğrudan veya direkt ışık ile bulut, sis ve diğer cisimlere çarparak yayılan ışık arasında önemli farklar bulunur. Doğrudan gelen ışınlar toplam ışığın %35'ini, yayılan ışık ise %50-60'ını oluşturur. Yayılan ışığın fizyolojik kalitesi daha yüksek olduğu için bitkilerin ihtiyacı olan ışık açığı karşılanmış olur.
Bitkiler de bu iki ışık türüne duydukları ihtiyaca göre, "güneş bitkileri" ve "gölge bitkileri" olarak ikiye ayrılırlar. Güneş bitkileri, doğrudan güneş ışığını alarak maksimum verim elde edecek şekilde yaratılmışken, gölge bitkileri orman gibi gölgeli alanlarda veya soğuk-bulutlu iklimlerde, dolaylı olarak gelen ışıkla maksimum fotosentez yapacak şekilde yaratılmışlardır.
Gürgen, ıhlamur, karaağaç, dişbudak, sedir ve ardıç ağaçları ise iki ortamda da yaşayabilecek şekilde yaratılmışlardır.

2. Işığın miktarı veya yoğunluğu
Yılın belli mevsimlerinde ekvatordan kuzeye ve güneye doğru gidildikçe aydınlanma ve buna bağlı olarak fotosentez süresi artar. Bu aydınlanmanın süresi, bitkilerde büyük değişiklikler yaşanmasına sebep olur. Fotosentezin artmasıyla bitkilerdeki büyüme, çiçeklenme, yapraklanma gibi gelişim süreçleri değişir. Bu durumda kısa sürede süratli bir büyüme gerçekleşir. Bu ışık özelliği nedeniyle çiçekler uzun ve kısa gündüz bitkileri olarak ikiye ayrılır. Örneğin, kısa gündüz bitkisi olan kasımpatı, sonbahar başlarında, gündüzün kısa olduğu zamanlarda çiçek açar, uzun günlerde ise çiçeksiz olarak büyür. Ancak ışık şiddeti ne kadar artarsa artsın fotosentez sadece belirli sınırlar içerisinde faaliyetine devam eder.75

3. Isı
Bitkilerin fotosentez yapabilmeleri ve hayatlarını sürdürebilmeleri için ısıya ihtiyaçları vardır. Belirli bir sıcaklıkta tomurcuklarını patlatarak çiçek açan, yapraklanan bitkiler, ısı belli bir sıcaklığın altına düştüğünde yaşamsal faaliyetlerini sona erdirirler. Örneğin, genelde ısı 10 derecenin üzerinde olduğunda orman ağaçları büyüme devresine girerler. Tarımda ise bu sınır 5 derecedir. Isı arttıkça kimyasal işlemler de iki ya da üç misli artar. Ancak ısı, 38-45 dereceyi aştığında, bitkinin büyümesi türüne göre yavaşlar, hatta durur.76
Bir bütün olarak fotosentezin aşamalarına, fotosentez yapan organizmalara, bu işlemi yapmak için ihtiyaç duydukları özel koşullara bakıldığında yaratılışın önemli delilleri görülür. Hassas ve muntazam ölçülerin biraraya gelmesiyle bir anlam kazanan bu sistem herşeyin yaratıcısı, sonsuz ilim sahibi Allah tarafından yaratılmış ve insanın emrine verilmiş bir nimettir.

4. Gece olması
Fotosentezin meydana gelmesi için birarada bulunması gereken koşullar oldukça fazladır ve bunlardan biri olmadığında fotosentez de olmaz. Bu koşullardan biri de gecedir. Bitkilerin yaşama ve büyüme faaliyetleri, gece ve gündüz arasındaki sıcaklık farklarıyla yakından ilgilidir. Bazı bitkiler gündüz fazla sıcaklığa ihtiyaç duyarken geceleri düşük sıcaklık isterler. Bazıları ise bu farkı istemezler.
Güneş'in doğmasıyla birlikte, yaprakta terleme ve buna bağlı olarak fotosentez artmaya başlar. Öğleden sonra ise bu olay tersine döner; yani fotosentez yavaşlar, solunum artar, çünkü sıcaklığın artmasıyla birlikte terleme de hızlanmaktadır. Geceleyin ise sıcaklığın azalmasıyla birlikte terleme yavaşlar ve bitki rahatlar. Eğer geceyi sadece bir gün yaşamasak, bitkilerin çoğu ölürdü. Gece, aynı insanlar için olduğu gibi, bitkiler için de bir dinlenme ve dinçleşme anlamına gelir.77
Allah Kuran'da gece ile gündüzü, Ay ile Güneş'i ve tüm bitkileri insanların hizmetine verdiğini şöyle bildirmiştir:

Geceyi, gündüzü, Güneş'i ve Ay'ı sizin emrinize verdi; yıldızlar da O'nun emriyle emre hazır kılınmıştır. Şüphesiz bunda, aklını kullanabilen bir topluluk için ayetler vardır. Yerde sizin için üretip-türettiği çeşitli renklerdekileri de (faydanıza verdi). Şüphesiz bunda, öğüt alıp düşünen bir topluluk için ayetler vardır. (Nahl Suresi, 12-13)

Başka ayetlerde ise, geceyi yaratanın Allah olduğu, O'nun dışında başka hiçbir varlığın buna güç yetiremeyeceği şöyle haber verilir:

De ki: "Gördünüz mü söyleyin, Allah kıyamet gününe kadar gündüzü sizin üzerinizde kesintisizce sürdürecek olsa Allah'ın dışında size içinde dinleneceğiniz geceyi getirecek ilah kimdir? Yine de görmeyecek misiniz? Kendi rahmetinden olmak üzere O, sizin için, dinlenmeniz ve O'nun fazlından (geçiminizi) aramanız için geceyi ve gündüzü var etti. Umulur ki şükredersiniz. (Kasas Suresi, 72-73)

5. Karbon çevrimi
Bitkiler, atmosfer ve okyanuslardaki karbondioksiti tüketip, organik bileşikler ürettikleri için birer karbon fabrikası ve çevreyi temizleyen bir arıtma tesisi olarak düşünülebilir. Solunum yoluyla az miktarda karbondioksit üretirler ve bunu hemen fotosentez için kullanırlar. Bitkilerin ve tek hücrelilerin karbondioksit tüketimi, insanların ve hayvanların karbondioksit üretimi arasındaki denge, okyanuslarda karbonatların üretilmesiyle eşitlenmiştir. Bu süreçte hava ve suda bulunan fazla miktardaki karbondioksit tüketilir.
İnsan yaşamı havadaki karbondioksit oranını büyük miktarda artırır. Bu artış ise küresel ısınma olayına ve bunun bir sonucu olarak sera etkisi denilen hava sıcaklığının artışına yol açar. Karbondioksit ve diğer zararlı kimyasalların kullanımı aynı zamanda asit yağmurlarına da yol açar. Bütün bu zararlı etkilere karşı en güçlü silah, fotosentez yapan canlılardır. Eğer yeryüzünde böyle bir denge kurulmamış olsaydı, canlılık hiçbir zaman varlığını sürdüremez, kısa bir süre içinde oksijen yetersizliğinden ve karbondioksit zehirlenmesinden yok olurdu. Böyle bir sorunla asla karşılaşmayız çünkü, herşeyi belli bir ölçü ile takdir edip belirleyen üstün ilim ve akıl sahibi Rabbimizin yaratışında hiçbir kusur ve eksiklik yoktur:

Göklerin ve yerin mülkü O'nundur; çocuk edinmemiştir. O'na mülkünde ortak yoktur, herşeyi yaratmış, ona bir düzen vermiş, belli bir ölçüyle takdir etmiştir. (Furkan Suresi, 2)

YEŞİL MUCİZE : KLOROFİL


Bir milimetrekarelik bir alan düşünelim. Bu alan bir kurşun kalemin ucu kadar küçük bir yer kaplar. Şimdi bu küçük alanın içine 500 bin adet özel aygıt yerleştirelim. Bu aygıtların her biri çok özel bir tasarıma ve fonksiyona sahip olsun. Ayrıca bu 500 bin aygıtı çok özel bir paket sistemiyle koruma altına alalım.
Belki bu senaryo ilk okuyuşta insana imkansız gibi gelebilir. Ancak Allah'ın yaratışı kusursuz ve ihtişamlıdır. Ve yukarıda bahsedilen örnek gerçek hayatta mevcuttur. Bir yaprağın ortasındaki bir milimetrekarede 500 bin adet klorofil bulunur.78 Küçücük bir alana sığdırılmış ve son derece kompleks bir tasarıma sahip olan klorofil molekülleri, -önceki bölümde de kısaca bahsettiğimiz gibi- insan hayatı için çok önemli bir görevi yerine getirirler.
Bir an için sizden özel bir aygıt tasarlamanızın istendiğini varsayalım. Tasarlayacağınız aygıtın görevi su molekülünü parçalamak olsun. Bilindiği gibi su, 2 hidrojen ve 1 oksijen atomunun biraraya gelmesi ile oluşur. Tasarlanacak aygıt da hidrojen molekülünü oksijenden ayırmak zorundadır.
Sudaki hidrojen ve oksijen atomlarını birbirlerinden ayırmak için çok büyük bir patlamanın gerçekleşmesi veya su moleküllerinin binlerce derecede ısıtılması gerekir. Suyun 100 derecede kaynadığı düşünülürse, ihtiyacımız olan enerjinin miktarı daha iyi anlaşılabilir. Oysa sizden öyle bir alet tasarlamanız istenmektedir ki, ne patlamaya ne de binlerce derecelik ısıya ihtiyaç duyulsun. Tek enerji kaynağı olarak da güneş ışığı kullanmanıza izin verilsin. Sizden istenilen ve tasarlayacağınız aygıtın yapması gereken zor bir görev daha vardır. Havadaki karbondioksiti, elde ettiği hidrojen ile birleştirmek.
Eğer bu işlemi gerçekleştirebilecek bir aygıt icat ederseniz bilim tarihine isminizi altın harflerle yazdırırsınız. Çünkü bilim dünyası tüm çabalara, teknolojik imkanlara ve olağanüstü bilimsel gelişmelere rağmen, hala yukarıda belirtilen işlemi gerçekleştiren bir aygıt icat edememiştir. Hatta bitkilerin, bu işlemi nasıl gerçekleştirdiğini hala bulmaya ve anlamaya çalışmaktadır. İşte "klorofil" isimli molekül, yeryüzünde söz konusu işlemi gerçekleştirebilen yegane aygıttır. Klorofilin tasarımı incelendiğinde Allah'ın herşeyi nasıl ince bir hesap ve sonsuz bir akılla yaratmış olduğu daha iyi görülür.
55 karbon, 72 hidrojen, 5 oksijen, 4 azot ve 1 magnezyum atomunun çok özel bir sıra ve çok özel bir tasarımla birleştirilmesi sonucunda klorofil molekülü meydana gelmiştir.79 Bu molekülün görevini yapabilmesi için her atomun yerli yerinde olması gerekir.
Klorifili oluşturan bu atomlar, görevlerini çok iyi bilir ve tıpkı şuurlu bir insan gibi ve bir insanın aklının alamayacağı kadar kısa bir sürede bu görevlerini tamamlarlar. Bu süre saniyenin on milyonda biri kadardır.80 İnsan bu kadar kısa bir zaman aralığını kesinlikle algılayamaz. İnsan için saniyenin binde biri ile saniyenin iki binde biri arasında bile bir fark yoktur. Her iki süre de insanın algılayamayacağı ve kavrayamayacağı kadar kısa bir süredir. Saniyenin on milyonda biri kadar bir süre ise insanın hayal gücünü dahi aşacak kadar kısadır.


Klorofilin İçinde Gerçekleşen
Olağanüstü Olaylar

Bilindiği gibi ışık fotonlardan oluşmuştur. Yeşil yaprakların içindeki suya çarpan ışık, klorofil aygıtına yüklenir. Bu yükleme klorofilde bulunan atom altı parçacıklarını harekete geçirir ve yörüngelerini değiştirir. Bu işlem, biraz önce de belirttiğimiz gibi saniyenin on milyonda biri kadar kısa bir sürede gerçekleşir ve atom altı parçacıklar o anda su molekülündeki hidrojeni oksijenden ayırırlar. Bu işlem o kadar hızlıdır ki, bilim adamları atom altı parçacıkların hidrojen ve oksijeni birbirlerinden nasıl ayırdığını halen anlayamamışlardır.
Ayrılan hidrojenler, enzim ya da katalist denilen daha büyük, spiral şekilli protein molekülleri tarafından yakalanırlar. Bu enzimler onları tutmak için özel olarak tasarlanmış bir şekle sahiptirler. Bunlar, hidrojeni, içeri alınan karbondioksitle öyle bir şekilde biraraya getirirler ki, her iki molekül birlikte çok yüksek hızda dönerek kimyasal olarak birbirlerine karışırlar. Bu da bilim adamları tarafından nasıl gerçekleştiği henüz çözülemeyen aşamalardan biridir. Çünkü bu sistemi izole ederek inceleyebilecek imkanlara henüz sahip değildirler. Sadece ortaya çıkan durumu değerlendirerek işlem sırasında neler olmuş olabileceği hakkında yorum yapmaktadırlar.81
Burada bir an durup düşünelim: Tek bir klorofil molekülünün içinde 21. yüzyılın teknolojisine sahip insanların nasıl çalıştığını dahi çözemediği kusursuz bir sistem vardır. Bu sistemin tek bir parçasında dahi olağanüstü işlemler gerçekleşir. Örneğin enzimler gelen ışıkla sudaki hidrojenin ayrılacağını sanki bilmekte ve beklemektedirler. Hidrojen atomu ayrıldığında ise hiç şaşırmadan, başka atomlarla örneğin ortama çıkan oksijen atomu ile karıştırmadan onu hemen tanımakta ve yakalamaktadırlar. Ardından da ne yapacaklarını çok iyi bilmekte ve hidrojeni götürüp karbondioksitle biraraya getirmektedirler. Burada çok basitleştirerek özetlediğimiz bu üstün şuur içeren davranışlar sayesinde dünyada canlılar yaşamlarını sürdürebilmektedir.
Üstelik tüm bu olaylar saniyenin on milyonda biri kadar kısa bir süre içinde gerçekleşmektedir. İnsanoğlu, sahip olduğu bütün teknolojiye rağmen, laboratuvar ortamında klorofil molekülünün, içinde bulunan enzimlerin ve atomların başardığı işi başaramamaktadır. Şüphesiz klorofilin sahip olduğu tasarım ve yaptığı iş, Allah'ın örneksiz ve benzersiz yaratmasının delillerindendir.


İlk Aşamalar
Fotosentez aşamalarının gerçekleşme süreleri incelendiği zaman Allah'ın kudreti ve yaratmasındaki ihtişam daha açık görülecektir.
Fotosentez işleminin gerçekleşmesi için gerekli olan zaman tek kelime ile inanılmazdır: "Saniyenin milyarda biri"82
Bu süre içinde enerji transferleri ve reaksiyon merkezinde toplanmış olan enerjinin gerekli yerlere dağıtımı gerçekleşmek zorundadır. Bu kısa zaman aralığı içinde enerji transferlerinin gerçekleşmesi bir başka noktayı ortaya çıkarır. Enerji transferi gibi karmaşık bir işlem daha da kısa bir süre içinde yapılmak zorundadır. Bu zamanı hayal etmek dahi mümkün değildir;
Bir saniyenin üç yüz milyarda biri.
Sözü edilen zaman zarfı bir saniyeyi üç yüz milyar parçaya bölerek elde edilen bir zaman birimidir ki, bu gerçekten insan aklının kavrama sınırlarının çok ötesindedir.


Tehlike Kontrol Altında

Fotosentez sırasında meydana gelen işlemler, gerekli önlemler alınmadığında son derece tehlikeli sonuçlar doğurabilir. Çünkü bu işlemler sırasında bir molekül parçalanmakta ve ardından bu parçalardan biri bir başka molekül ile birleştirilmektedir. Bunu yaparken ise, son derece tehlikeli bir yöntem, atom altı parçacıkların hareketleri kullanılmaktadır.
Atom altı parçacıklarının hareketleri umulmayacak kadar tehlikeli durumlar meydana getirebilir. Eğer bütün işlemler kontrol altına alınmazsa, sonuç bitki hücrelerinin parçalanmasına dahi neden olabilir. Ancak fotosentez işleminde meydana gelen her aşama için ayrı ayrı önlemler yaratılmıştır.
Bu durumu modern atom santrallerindeki nükleer reaktörlerin tasarımına benzetebiliriz. Nükleer reaktörlerde atomların parçalanması sonucunda ortaya çıkan enerji, elektrik enerjisi üretmek için kullanılmaktadır. Atomun parçalanması sonrasında enerjinin yanı sıra son derece tehlikeli radyoaktif unsurlar da (örneğin gama ışınları) ortaya çıkmaktadır. Reaktör, atomun parçalanması sonucunda ortaya çıkan enerjiyi faydalı bir hale getirirken, zararlı parçacıkları da etkisiz hale getirecek şekilde tasarlanmıştır. Bu nedenle reaktörün içine zararlı parçacıkların etkilerini durduracak özel sistemler yerleştirilmiştir.
Çalışma sistemleri ve üretim şekli birbirlerinden farklı olsa da fotosentez mekanizmasında da, nükleer reaktörlerde de ortak bir nokta vardır. Fotosentez mekanizmaları da tıpkı nükleer reaktörler gibi, üretim sırasında ortaya çıkacak zararlı unsurları ortadan kaldıracak güvenlik sistemlerine sahiptir. Bu arada özellikle belirtmek gerekir ki, fotosentez mekanizmaları, insanoğlunun inşa ettiği nükleer reaktörlerden hem çok daha ileri bir teknolojiye hem de çok daha üstün bir tasarıma sahiptir. Ayrıca, asıl düşündürücü olan nokta, nükleer reaktörlerin yüzbinlerce metrekarelik alana kurulmuş dev tesisler olmaları ve fotosentezin ise gözle görülmeyecek kadar küçük bir hücrenin içinde gerçekleşmesidir. Fotosentez sırasında meydana gelebilecek her türlü tehlike hesaba katılmıştır. Örneğin elektron transferi yapan alt sistemlerin birbirlerine olan mesafeleri dahi çok özel bir plan dahilinde ayarlanmıştır. Söz konusu mesafe en gelişmiş mikroskopların altında dahi görülemeyecek kadar küçüktür.
Ayrıca fotosentez işlemi sırasında adeta birer robot gibi görev yapan protein-pigment bileşikleri devreye girerler. Bunların hangisinin hangi aşamada devreye gireceği ve hangi tehlikeyi ortadan kaldıracağı yine kusursuz bir plan ile belirlenmiştir.
Bu konu hakkında inceleyeceğimiz birkaç teknik ayrıntı bizlere mevcut tasarımın mükemmelliğini daha iyi gösterecektir:
Işığın yoğun olduğu zamanlarda klorofil "üçlü durum" (triplet) adı verilen kimyasal bir duruma yükselir. Bu ise bitki içinde büyük zararlar meydana getirebilir. Çünkü, üçlü durumda klorofilin dış halkasındaki iki elektronun yörüngeleri karşıt olacağına aynı yöndedir.
Bu üçlü klorofil, hemen oksijenle reaksiyona girerek proteinlere zarar verecek bir tekli oksijenin oluşmasına yol açar. Bu zarara engel olan ise klorofillerin çok yakınında yerleşmiş olan karotenlerdir. Yine bir pigment çeşidi olan birçok karoten, biraraya gelerek klorofilin üçlü durumunu yatıştırarak tekli oksijen oluşumunu engellerler. Yani klorofilde yüklenmiş olan fazla miktardaki enerjiyi paylaşarak klorofilin zararlı bir hale gelmesini önlerler.83
Fotosentezde meydana gelen yüzlerce planlı aşama ve kurulu sistemleri bir kenara bırakarak, yalnızca yukarıda bahsedilen son teknik ayrıntı düşünüldüğünde dahi, Allah'ın yaratmasındaki kusursuzluk açıkça görülmektedir. Klorofil molekülü tehlikeli bir duruma geldiği anda, klorofildeki fazla enerjinin ortadan kaldırılmasını sağlayacak ve klorofili zararsız hale getirecek olan "karoten" isimli molekülün;
- tam olarak olması gereken yerde,
- tam olarak olması gereken anda,
- tamamen doğru bir tasarıma sahip olarak bulunması, bu sistemin çok üstün bir akıl tarafından, yani Allah tarafından var edilmiş olduğunu göstermektedir. Hiçbir tesadüf bu kadar detaylı, kompleks ve kusursuz sistemi, her türlü önlemi ile birlikte ortaya çıkaramaz. Hiçbir akıl sahibi insan da, kör tesadüflerin böyle bir sistemi meydana getirdiğini kabul edemez.


Fotosentezin Gizemli Dünyası

Fotosentez işlemi taklit edilerek kurulan enerji üretim sistemleri büyük problemlerle karşılaşmıştır. Bu problemlerden en önemlisi, devamlı tekrarlayan bir reaksiyon zinciri oluşturulamadığından, reaksiyonu başlatmak için her seferinde yeni bir enerji kullanmak zorunda kalınmasıdır. Ayrıca emilen ışığı ihtiyaca göre transfer edecek veya başka bir enerji şekline dönüştürüp depolayacak sistem kurulamadığı için, Güneş'ten gelen ışığın büyük bir kısmı ya geri yansıtılarak ya da dağıtılarak harcanır. Güneş enerjisini kullanmaya çalışan bütün araçlar bu problemle karşı karşıyadır. Yeşil yapraklar ise ilk yaratıldıkları günden itibaren sahip oldukları üstün sistem sayesinde bu sorunlarla hiç karşılaşmamışlardır.


Fotosentezin Aşamaları

Bilim adamları kloroplastların içinde gerçekleşen fotosentez olayını uzun bir kimyasal reaksiyon zinciri olarak tanımlamaktadırlar. Ancak, önceki sayfalarda da belirtildiği gibi, bu reaksiyonun olağanüstü hızlı gerçekleşmesi nedeniyle, bazı aşamaların neler olduğunu tespit edememektedirler. Anlaşılabilen en açık nokta, fotosentezin iki aşamada meydana geldiğidir. Bu aşamalar "aydınlık evre" ve "karanlık evre" olarak adlandırılır. Sadece ışık olduğu zaman meydana gelen aydınlık evrede fotosentez yapan pigmentler güneş ışığını emerler ve sudaki hidrojeni kullanarak kimyasal enerjiye dönüştürürler. Açıkta kalan oksijeni de havaya geri verirler. Işığa ihtiyaç duymayan karanlık evrede, elde edilen kimyasal enerji şeker gibi organik maddelerin üretilmesi için kullanılır.


Aydınlık evre

Fotosentezin ilk aşaması olan aydınlık evrede, yakıt olarak kullanılacak olan NADPH ve ATP ürünleri elde edilir.
Fotosentezin ilk aşamasında görev yapan ve ışığı tutmakla görevli olan anten grupları büyük bir öneme sahiptirler. Daha önce de gördüğümüz gibi, kloroplastın bu görev için tasarlanmış bir parçası olan bu antenler, klorofil gibi pigmentlerden, protein ve yağdan oluşur ve "fotosistem" adını alır. Kloroplastın içinde iki adet fotosistem vardır. Bunlar 680 nanometre ve altında dalga boyundaki ışıkla uyarılan Fotosistem II ve 700 nanometre ve üstünde dalga boyuyla uyarılan Fotosistem I'dir. Fotosistemlerin içinde ışığın belirli bir dalga boyunu yakalayan klorofil molekülleri de P680 ve P700 olarak adlandırılmışlardır.
Işığın etkisiyle başlayan reaksiyonlar bu fotosistemlerin içinde gerçekleşir. İki fotosistem, yakaladıkları ışık enerjisiyle farklı işlemler yapmalarına rağmen, iki sistemin işlemi tek bir reaksiyon zincirinin farklı halkalarını oluşturur ve birbirlerini tamamlarlar. Fotosistem II tarafından yakalanan enerji, su moleküllerini parçalayarak, hidrojen ve oksijenin serbest kalmasını sağlar. Fotosistem I ise NADP'nin hidrojenle indirgenmesini sağlar.
Bu üç aşamalı zincirde ilk olarak suyun elektronları Fotosistem II'ye, daha sonra Fotosistem II'den Fotosistem I'e son olarak da NADP'ye taşınır. Bu zincirin ilk aşaması çok önemlidir. Bu süreçte tek bir fotonun (ışık parçası) bitkiye çarptığı anda meydana gelen olaylar zincirini inceleyelim. Söz konusu foton bitkiye çarptığı anda, kimyasal bir reaksiyon başlatır. Fotositem II'nin reaksiyon merkezinde bulunan klorofil pigmentine ulaşır ve bu molekülün elektronlarından birini uyararak daha yüksek bir enerji seviyesine çıkartır. Elektronlar, atom çekirdeğinin etrafında belirli bir yörüngede dönen ve çok az miktarda elektrik yükü taşıyan son derece küçük parçacıklardır. Işık enerjisi, klorofil ve diğer ışık yakalayan pigmentlerdeki elektronları iterek yörüngelerinden çıkartır. Bu başlangıç reaksiyonu fotosentezin geri kalan aşamalarını devreye sokar; elektronlar bu sırada saniyenin milyonda biri kadar bir zamanda yankılanma veya sallamadan kaynaklanan bir enerji verirler. İşte ortaya çıkan bu enerji, bir sıra halinde dizili bulunan pigment moleküllerinin birinden diğerine doğru akar. (bkz. 178. sayfadaki şekil)
Bu aşamada, bir elektronunu kaybeden klorofil, pozitif elektrik yüklü hale gelir, elektronu kabul eden alıcı molekül ise negatif yük taşımaktadır. Elektronlar, elektron transfer zinciri adı verilen ve taşıyıcı moleküllerden oluşan bir zincire geçmiş olur. Elektronlar bir taşıyıcı molekülden diğerine, aşağı doğru ilerlerler. Her elektron taşıyıcısı bir öncekinden daha düşük bir enerji seviyesine sahiptir, sonuç olarak elektronlar zincir boyunca bir molekülden diğerine akarken kademeli olarak enerjilerini serbest bırakırlar.
Bu olayı daha kolay anlamak için sistemi bir hidroelektrik santraline benzetebiliriz. Bu santralde bir şelaleden düşen su bir elektrik jeneratörünü beslemektedir. Suyun seviye farkı ne kadar fazla olursa elde edilecek enerji de o kadar fazla olacaktır. Ancak suyun yüksek bir seviyeden akması için iki adet pompa kullanılmaktadır. Bu pompalar ise su akışına göre iki stratejik noktaya yerleştirilmiş olan ve bütün sistemi devreye sokan, güneş enerjisini toplayan paneller tarafından hareket ettirilmektedir. Elbette ki bu, çok basitleştirilmiş bir örnektir. Bu sistemi kurmayı başarsak dahi, güneş panellerinin elde ettiği enerjiyi, pompaları çalıştıracak elektrik enerjisine çevirmek bile ilk aşamada karşılaşacağımız büyük bir problemdir. Ancak bitkiler fotosentez yaparken, bu işlemi üstün bir tasarımla, mükemmel bir şekilde yerine getirmektedir.
Sistemin çalışabilmesi için suyun, tilakoidlerin iç tarafındaki alanda parçalanması gerekmektedir. Bu sayede elektronlarını zar boyunca ileterek stromaya ulaştıracak ve orada NADP+'ye (nikotinamid adenin dinükleotid fosfat fotosentez sırasında, Fotosistem I için elektron alan yüksek enerji yüklü bir molekül) indirgenecektir Ancak su kolay kolay parçalanmadığı için bu bölgede güçlü bir organizasyon ve işbirliğine ihtiyaç vardır. Bu işlem için gerekli olan enerji, yol boyunca iki noktada devreye giren güneş enerjisinden sağlanır. Bu aşamada suyun elektronları iki fotosistemden de birer "itme" hareketine maruz kalırlar. Her bir itişin ardından, elektron taşıma sisteminin bir hattından geçerler ve bir parça enerji kaybederler. Bu kaybedilen enerji fotosentezi beslemek için kullanılır.

Fotosistem I ve NADPH oluşumu:
Fotosistem I'e çarpan bir foton, P700 klorofilinin bir elektronunu daha yüksek bir enerji seviyesine çıkartır. Bu elektron, elektron taşıma sisteminin NADPH hattı tarafından kabul edilir. Bu enerjinin bir kısmı, stromadaki NADP+'nın NADPH'ye indirgenmesi için kullanılır. Bu işlemde NADP+ iki elektron kabul ederek sistemden çıkar ve stromadan bir hidrojen iyonu alır. (bkz. s. 178 ve s. 179'daki şekiller)

Fotosistem II - Fotosistem I
Elektronun yörüngesinden çıkması, elektron alıcısına ulaşması ve bunu takip eden birçok işlem, fotosentez için gerekli olan enerjiyi sağlar. Fakat bu işlemin bir defa gerçekleşmesi tek başına yeterli değildir. Fotosentezin devamı için bu işlemin, her an, tekrar tekrar gerçekleşmesi gerekmektedir. Bu durumda ortaya büyük bir sorun çıkmaktadır. İlk elektron yörüngesinden çıktığı zaman, onun yeri boş kalmıştır. Buraya yeni bir elektron yerleştirilmeli, sonra gelen foton bu elektrona çarpmalı, yerinden fırlayan elektron alıcı tarafından yakalanmalıdır. Her defasında da fotonu karşılayacak bir elektrona ihtiyaç vardır.
Bu aşamada P700'ün kaybettiği elektronun yerine yenisi konur ve stromada bulunan hidrojen iyonu (H+) tilakoidin içine taşınır. Bir foton Fotosistem II'de P680'in bir elektronuna çarparak enerji seviyesini arttırır. Bu elektron diğer elektron taşıma sistemine geçer ve Fotosistem I'de P700'e kadar ulaşarak kaybedilen elektronun yerini alır. Elektron bu taşıma zinciri boyunca hareket ederken, fotondan aldığı enerji, hidrojen iyonunun stromadan, tilakoidin içine taşınması için kullanılır. Bu hidrojen daha sonra ATP üretiminde kullanılacaktır. Bütün canlıların hayatta kalmak için kullandıkları yakıt olan ATP, ADP'ye (adenozin difosfat – canlılarda bulunan bir kimyasal) bir fosfor atomu eklenmesiyle elde edilir. Sonuçta elektron, elektron transferini gerçekleştiren taşıyıcı moleküller, Fotosistem II'nin elektronlarını Fotosistem I'e ulaştırarak, P700'ün elektron ihtiyacını karşılar ve sistem mükemmel bir şekilde işlemeye devam eder.
Elbette elektron sarfiyatının karşılanması için bir elektron deposunun tasarlanmış ve en doğru yere yerleştirilmiş olması, bu sistemin bütün detaylarının yaratılmış olduğunun bir başka delilidir.

Su - Fotosistem II
Ancak bu karmaşık tablo burada bitmez. Elektronlarını P700'e veren P680 bu aşamada elektronsuz kalmıştır. Ancak onun ihtiyacı olan elektronun karşılanması için de ayrı bir sistem kurulmuştur. P680'in elektronları, köklerden yapraklara taşınan suyun, hidrojen, oksijen iyonları ve elektronlar şeklinde parçalanmasıyla elde edilecektir. Sudan gelen elektronlar Fotosistem II'ye akarak P680'nin eksik elektronlarını tamamlarlar. Hidrojen iyonlarının bazıları, elektron taşıma zincirinin sonunda NADPH üretmek için kullanılır, oksijen ise serbest kalarak atmosfere geri döner.
Enerji ve ısının böyle aşamalı olarak serbest bırakılmasını sağlayacak, son derece kompleks ve en basit haliyle anlatıldığında dahi anlaşılması çok zor olan bir zincir sisteminin kurulması üstün bir tasarımın ve sonsuz bir aklın göstergesidir. Bu kompleks ve üstün tasarım sayesinde kloroplast ve hücrelerin zararlı miktardaki ısı artışından korunması sağlanmış, ayrıca bitkinin NADPH ve ATP gibi asıl ürünleri oluşturması için gerekli olan vakit kazanılmış olmaktadır.
Fotosentezin tasarımında ortaya çıkan bir başka mucize ise özellikle dikkat çekicidir. Yukarıda da bahsettiğimiz gibi Fotosistem I ve II'nin antenleri P700 ve P680 olarak ikiye ayrılır, bu iki antenin yakaladıkları ışık dalga boyu arasındaki 20 nanometrelik fark bütün sistemin işlemesinde özel bir anahtar görevi görmektedir. Aslında iki anten de aynı kimyasal yapıya ve şekle sahiptir ancak "Kla" adı verilen ve ışığı yakalayan birer tuzak görevi gören özel moleküllerin varlığı, aralarındaki farklılığı ortaya çıkartmaktadır. Bu akıl almayacak kadar küçük sayılar ve oranlar üzerine kurulu sistemde 20 nanometre (1 nanometre, 1 metrenin milyarda biridir.) gibi hayal edilmesi bile güç bir mesafe aralığını elde edecek özel sistemleri tasarlayan ise sonsuz ilim sahibi bir Yaratıcıdan başkası değildir.
Fotosentezin ilk aşaması olan aydınlık evre, bu kadar üstün sistemlerle çalışmasına rağmen aslında bir hazırlık aşamasıdır. Bu aşamada üretilen yakıt niteliğindeki maddeler asıl işlemlerin gerçekleştiği karanlık evrede kullanılacak, böylece bu tasarım harikası sistem tamamlanacaktır.


Karanlık evre
Aydınlık evre sonucunda ortaya çıkan enerji yüklü ATP ve NADPH molekülleri, karanlık evrede kullanılan karbondioksiti, şeker ve nişasta gibi besin maddelerine dönüştürürler.
Karanlık evre dairesel bir reaksiyondur. Bu devre, sürecin devam edebilmesi için reaksiyonun sonunda yeniden üretilmesi gereken bir molekülle başlar. Kelvin devri de denilen bu reaksiyonda NADPH'yle bitişik olan elektronlar ve hidrojen iyonları ve ATP'yle bitişik olan fosfor kullanılarak glikoz üretilir. Bu işlemler kloroplastın "stroma" diye adlandırılan sıvı bölgelerinde gerçekleşir ve her aşama farklı bir enzim tarafından kontrol edilir. Karanlık evre reaksiyonu gözenekler yoluyla yaprağın içine girerek stromada dağılan karbondiokside ihtiyaç duyar. Bu karbondioksit molekülleri stromada, 5-RuBP adı verilen şeker moleküllerine bağlandıklarında dengesiz 6-karbon molekülü oluştururlar ve böylece karanlık evre başlamış olur. (bkz. s. 185'deki şekil, 1. aşama)
Bu 6-karbon molekülü hemen ayrılır ve ortaya iki tane 3-fosfogliserat (3PG)molekülü çıkar. Her iki moleküle de ATP tarafından fosfat eklenir ve bu işleme fosforilasyon denir. (bkz. s. 185'daki şekil, 2. aşama) Fosforilasyon sonucunda iki bifosfogliserat (BPG) molekülü oluşur. Bunlar NADPH tarafından parçalanır ve ortaya iki gliseral-3-fosfat (G3P) molekülü çıkar. (bkz. s.185'daki şekil, 3-4. aşamalar) Bu son ürün artık kavşak noktasındadır ve bir kısmı sitoplazmaya giderek glikoz üretimine katılmak için kloroplastı terk eder. (bkz. s.185'daki şekil, 5. aşama) Diğer kısmı ise Kelvin devrine devam eder ve tekrar fosforilasyona uğrar. Böylece devrin en başındaki 5-RuBP molekülüne dönüşür. (bkz. s 185'daki şekil, 7-8. aşamalar) Bir glikoz molekülü oluşturmak için gerekli olan G3P molekülünün üretilebilmesi için bu devrin 6 kez tekrarlanması gerekir.
Fotosentezin her aşamasında olduğu gibi bu aşamasında da enzimler önemli görevler üstlenmişlerdir. Bu enzimlerin ne kadar hayati öneme sahip olduklarını anlamak için bir örnek verelim. Fotosentezin özellikle bu aşamasında etkili olan karboksidismütaz (ribuloz 1,5 difostaz karboksilaz) adlı enzim 0,00000001 milimetre (milimetrenin yüzmilyonda biri) büyüklüğünde olmasına rağmen asitleri ayrıştırır, oksitleme işlerini katalize eder.
Bu ne işe yarar? Eğer karbonhidratlar (trioz-heksoz moleküller) hücre içinde belirli bir oranda ve belirli bir yapıda depolanmazlarsa, hücre içi basıncı artırır ve en sonunda hücrenin parçalanmasına yol açarlar. Bu yüzden bu depolama, sıvılardan kaynaklanan iç basıncı etkilemeyen nişasta makromolekülleri şeklinde gerçekleşir. Bu ise enzimlerin 24 saat boyunca yaptıkları sıradan işlerden biridir.
Daha önce de belirtildiği gibi geriye kalan 5 RuBP molekülü ise sistemi yeniden başlatmak için gerekli olan madde ihtiyacını karşılayarak, kesintisiz bir reaksiyon zincirinin kurulmasını sağlamış olur. Karbondioksit, ATP ve NADPH mevcut olduğu sürece bu reaksiyon bütün kloroplastlarda devamlı olarak tekrarlanır. Bu reaksiyon sırasında üretilen binlerce glikoz molekülü bitki tarafından oksijenli solunum ve yapısal malzeme olarak kullanılır ya da depolanır.84
Burada kısaca özetlenen ve anlamak için ciddi bir dikkat verilmesi gereken bu reaksiyon zincirini kaba hatlarıyla çözebilmek bile bilim adamlarının yüzyıllarını almıştır. Yeryüzünde başka hiçbir şekilde üretilemeyen karbonhidratlar ya da daha geniş anlamda organik maddeler, milyonlarca yıldır bitkiler tarafından bu son derece kompleks sistem sayesinde üretilmektedir. Üretilen bu maddelerse diğer canlılar için en önemli besin kaynaklarıdır.
Fotosentezi, bu karmaşık ve bugün dahi insanlar tarafından tam olarak anlaşılamamış haliyle, milyarlarca yıldır gerçekleştiren bitkiler, bakteriler ve diğer tek hücreli canlılar ne yaptıklarının bile farkında olmayan, aklı, beyni, gözü ve kulağı bulunmayan varlıklardır. Bu varlıkların, fotosentez sistemine kendi kendilerine sahip olduklarını iddia etmek, bu varlıkların enerji sağlamak için Güneş'i, suyu ve havayı kullanmak yönünde bir karar aldıklarını, bu kararlarını uygulamak için kimya, fizik, matematik, optik ve genetik bilgilerine sahip olduklarını iddia etmek kadar mantıksızdır. Bitkiler şöyle dursun, dünyanın bütün araştırmacıları ve bilim adamları biraraya gelseler ve sadece organik maddeleri kullanarak fotosentez yapan bir klorofil üretmeye kalksalar yine bunu başaramazlar. Çünkü bu sistemi kurmaları için önce sistemin nasıl çalıştığını çözmeleri gerekir; ancak bugünkü bilim ve teknoloji düzeyi bu son derece kompleks ve esrarengiz sistemin işleyişini ana hatları dışında çözmeye yetmemektedir.
Kaldı ki bir gün bu sır çözülse dahi, bir kurşun kalem ucuna 500 bin tanesi sığdırılmış klorofil molekülünün bir benzerini üretmek dahi şu anda insan aklı ve yeteneklerinin çok ötesinde bir durumdur. Dolayısıyla insan aklı ve imkanlarının gerçekleştiremediğini, bitkilerin içindeki şuursuz atomların ve kör tesadüflerin gerçekleştirdiğini iddia etmek son derece akıl dışıdır.

FOTOSENTEZ : EVRİMİN TESADÜF MANTIĞINI GEÇERSİZ KILAN İŞLEM


Bilindiği gibi evrim teorisi canlıların ve canlılardaki kusursuz ve karmaşık yapı ve sistemlerin kendiliğinden, doğal şartlar altında tesadüfen oluştuğunu iddia eder. Oysa buraya kadar açıkça gördüğümüz gibi, değil canlı bedenleri, bir bitkinin tek bir yaprağındaki fotosentez sistemleri dahi son derece karmaşık bir tasarıma sahiptir. Dolayısıyla evrimin iddia ettiği gibi bunların tesadüfen, kendiliğinden meydana gelmeleri imkansızdır.
Bütün bu apaçık gerçeklere rağmen yine de evrim teorisini savunmaya devam edenler için sorular sorarak bu sistemin tesadüfen oluşamayacağını bir kere daha görelim. Boyutu mikroskobik ölçülerle tanımlanan bir alanda kurulmuş bu örneksiz mekanizmayı tasarlayan kimdir? Elbette bu soru ile birlikte sorulması gereken başka bir soru da şudur: Böyle bir sistemi şuursuz bitki hücrelerinin planladıklarını yani bitkilerin düşünerek planlar yaptıklarını varsayabilir miyiz? Elbette böyle bir şeyi varsayamayız. Çünkü, bitki hücrelerinin tasarlaması, akletmesi gibi bir şey söz konusu değildir. Hücrenin içine baktığımızda gördüğümüz kusursuz sistemi yapan hücrenin kendisi değildir. Peki öyleyse bu sistem düşünebilen yegane varlık olan insan aklının bir ürünü müdür? Hayır değildir. Milimetrenin binde biri büyüklüğünde bir yere yeryüzündeki en kompleks tesisi kuranlar insanlar da değildir. Hatta insanlar bu mikroskobik tesisin içinde olan bitenleri gözlemleyemezler bile.
Evrim teorisi bütün canlıların aşama aşama geliştiğini, basitten komplekse doğru bir gelişim olduğunu iddia eder. Fotosentez sistemindeki mevcut parçaları belli bir sayıyla sınırlayabildiğimizi varsayarak, bu iddianın doğru olup olmadığını düşünelim. Örneğin fotosentez işleminin gerçekleşmesi için gerekli olan parçaların sayısının 100 olduğunu varsayalım (gerçekte bu sayı çok daha fazladır). Varsayımlara devam ederek bu 100 parçanın -böyle bir şey imkansız olmakla birlikte- bir iki tanesinin evrimcilerin iddia ettikleri gibi tesadüfen, kendi kendine oluştuğunu kabul edelim. Bu durumda geriye kalan parçaların oluşması için milyarlarca yıl beklenmesi gerekecektir. Oluşan parçalar birarada bulunsalar bile diğer parçalar olmadığı için bir işe yaramayacaklardır. Tek biri olmadığında diğerleri işlevsiz olan bu sistemin ise hiçbir işe yaramadan diğer parçaların oluşumunu beklemeleri imkansızdır. Dolayısıyla canlılara ait tüm sistemler gibi, karmaşık bir sistem olan fotosentezin de evrimin öne sürdüğü gibi, zaman içinde, tesadüflerle, yavaş yavaş oluşan parçaların eklenmesiyle meydana gelmesi akıl ve mantıkla bağdaşan bir iddia değildir.
Bu iddianın çaresizliğini fotosentez işleminde gerçekleşen bazı aşamaları kısaca hatırlayarak görebiliriz. Öncelikle fotosentez işleminin gerçekleşebilmesi için mevcut bütün enzimlerin ve sistemlerin aynı anda bitki hücresinde bulunması gereklidir. Her işlemin süresi ve enzimlerin miktarı tek bir seferde en doğru biçimde ayarlanmalıdır. Çünkü gerçekleştirilen reaksiyonlarda oluşabilecek en ufak bir aksaklık, örneğin işlem süresi, reaksiyona giren ısı veya hammadde miktarında küçük bir değişiklik olması, reaksiyon sonucunda ortaya çıkacak ürünleri bozacak ve yararsız hale getirecektir. Bu sayılanların herhangi bir tanesinin olmaması durumunda da sistem tamamen işlevsiz olacaktır.
Bu durumda akla bu işlevsiz parçaların sistemin tümü oluşana kadar nasıl olup da varlıklarını sürdürdükleri sorusu gelecektir. Ayrıca boyut küçüldükçe o yapıdaki sistemin gerektirdiği aklın ve mühendisliğin kalitesinin arttığı da bilinen bir gerçektir. Bir mekanizmadaki boyutun küçülmesi bize o yapı üzerinde kullanılan teknolojinin gücünü gösterir. Günümüz kameralarıyla seneler önce kullanılan kameralar arasında bir karşılaştırma yapıldığında bu gerçek daha net anlaşılır. Bu gerçek, yapraklardaki kusursuz yapının önemini daha da artırmaktadır. İnsanların büyük fabrikalarda dahi yapamadıkları fotosentez işlemini bitkiler nasıl olup da bu mikroskobik fabrikalarında, üstelik milyonlarca yıldır, gerçekleştirmektedirler?
İşte bu ve benzeri sorular evrimcilerin hiçbir tutarlı açıklama getiremedikleri sorulardır. Buna karşın, çeşitli hayali senaryolar üretirler. Üretilen bu senaryolarda başvurulan ortak taktik ise, konunun demagojiler ve kafa karıştırıcı teknik terim ve anlatımlarla boğulmasıdır. Olabildiğince karışık terimler kullanarak bütün canlılarda çok açık görülen gerçeği, "Yaratılış Gerçeği"ni örtbas etmeye çalışırlar. Neden ve nasıl gibi sorulara cevap vermek yerine, konu hakkında ayrıntılı bilgiler ve teknik kavramlar sıralayıp sonuna bunun evrimin bir sonucu olduğunu eklerler.
Bununla birlikte en koyu evrim taraftarları bile, çoğu zaman bitkilerdeki mucizevi sistemler karşısında hayretlerini gizleyememektedirler. Buna örnek olarak Türkiye'nin evrimci profesörlerinden Ali Demirsoy'u verebiliriz. Prof. Demirsoy, fotosentezdeki mucizevi işlemleri vurgulayarak, bu kompleks sistemin karşısında şöyle bir itirafta bulunmaktadır:
Fotosentez oldukça karmaşık bir olaydır ve bir hücrenin içerisindeki organelde ortaya çıkması olanaksız görülmektedir. Çünkü tüm kademelerin birden oluşması olanaksız, tek tek oluşması da anlamsızdır.85
Fotosentez işlemindeki bu kusursuz mekanizmalar şimdiye kadar gelmiş geçmiş bütün bitki hücrelerinde vardır. En sıradan gördüğünüz bir yabani ot bile bu işlemi gerçekleştirebilmektedir. Reaksiyona her zaman aynı oranda madde girer ve çıkan ürünler de hep aynıdır. Reaksiyon sıralaması ve hızı da aynıdır. Bu, istisnasız bütün fotosentez yapan bitkiler için geçerlidir.
Bitkiye akletme, karar verme gibi vasıflar vermeye çalışmak elbette mantıksızdır. Bunun yanı sıra bütün yeşil bitkilerde var olan ve kusursuz bir şekilde işleyen bu sisteme "Tesadüfler zinciri ile oluştu" şeklinde bir açıklama getirmek de her türlü mantıktan uzak bir çabadır.
İşte bu noktada karşımıza apaçık bir gerçek çıkar: Olağanüstü kompleks bir işlem olan fotosentez bilinçli olarak tasarlanmıştır, yani Allah tarafından yaratılmıştır. Bu mekanizmalar bitkiler ilk ortaya çıktıkları andan itibaren vardır. Bu kadar küçük bir alana yerleştirilmiş olan bu kusursuz sistemler bize kendilerini tasarlayan Yaratıcının gücünü gösterirler.
Bakterilerin Oksijenli FotosenteziTek hücreli canlılar gibi bakterilerin de ilkel canlılar olduğunu söyleyen evrimcilerin bu iddiaları da tamamen hayal ürünüdür. Fotosentez yapan bakteriler bu iddianın ne kadar çürük temeller üzerine kurulduğunu kanıtlayan en önemli delillerden biridir. Siyano bakteri, üç milyar yıldır fotosentez yapan bir bakteridir. Bakterinin içinde bunun gibi henüz nasıl çalıştığı tam olarak anlaşılamamış sistemler devrededir.
Çeşitli bakteri türleri, fotosentez yapmak için su kullanmazlar; bunun yerine bulundukları çevredeki inorganik ve organik molekülleri okside ederler. Oksijenli fotosentezi bile tam olarak çözemeyen bilim adamları için oksijensiz fotosentez de büyük bir sır konusu olmaya devam etmektedir.
Bu kadar farklı fotosentez çeşidi olması yine Allah'ın belirlediği bir hikmet üzerinedir. Oksijen karadaki ve denizdeki canlılar için vazgeçilmez bir ihtiyaçtır. Allah her türlü ortamda oksijen üretilmesi için benzersiz sistemler kurmuştur. Dahası bu sistemler öyle yüksek teknolojilere sahiptirler ki, bu sistemlerin nasıl çalıştığı 21. yüzyıl insanları için bile hala bir sırdır.
Bakterilerin diğer özelliklerini incelediğimizde bir başka gerçeğe daha şahit oluruz. Allah yeryüzünü birbiri içine geçmiş milyarlarca denge ile yaratmıştır. Bakterilerin varlığı da bu vazgeçilmez dengelerden biridir. Bakteriler ekolojik sisteme temel oluştururlar, atmosferdeki gaz oranının sabit kalmasını sağlarlar. Yeryüzündeki sayısız canlının besin zincirinin ilk halkalarından birini oluştururlar. En büyüğünden en küçüğüne kadar yeryüzündeki her canlı sahip olduğu özellikler ve yeryüzündeki görevleri ile, üstün ve kudretli tek bir Yaratıcının varlığını ispatlamaktadır.


Algler

Algler, denizden tatlı suya, çöl kumlarından kaynar yer altı kaynaklarına, hatta kar ve buz altına kadar her ortamda bulunan, fotosentez yapabilen organizmalardır. Tek hücreli formlardan 60 metreye kadar büyüyen dev kelp yosununa kadar değişen şekillere sahiptirler. Karmaşık yapılarının yanı sıra çeşitli üreme şekilleri ve diğer bitkilerle kurdukları ortak yaşam şekilleriyle bütün dünyaya yayılan algler, yaptıkları büyük miktardaki fotosentezle atmosferdeki oksijenin büyük bir kısmını sağlarlar.
Evrimci bakış açısına göre tek hücreli canlılar, çok hücreli canlılardan daha ilkeldirler. Bu ise onlara göre çok hücrelilerin tek hücrelilerden evrimleştiklerinin sözde kanıtıdır. Ancak diğer evrimci senaryolar gibi bu görüşün de bilimsel bir dayanağı yoktur. Bilakis tek hücrelilerin bazı formları son derece kompleks bir hücre yapısı sergilerler. İşte fotosentez yapan algler bu kompleks hücre yapısına sahip ve atmosferdeki oksijenin büyük bir kısmını sağlayan canlılardır. Tek hücreli alglerin kompleks hücre yapılarının yanı sıra, sahip oldukları şekiller, doğadaki en zarif geometrik desenleri sergilemektedir. Çıplak gözle görülemeyen bu canlılar ortalama 0,5 mikrometre (1 mikrometre, metrenin milyonda biridir) çapındadırlar.86
Bu küçük boyutlarına rağmen yeryüzünde inanılmayacak kadar çok sayıda bulunurlar. Okyanuslardaki canlı organizmaların %90'ını oluştururlar. Diğer fotosentez yapan canlılarla (plankton) beraber yılda yaklaşık 130 milyon ton organik karbon üreterek dünyadaki besin zincirinin de temelini oluştururlar.87 Bu canlıların her biri dünyaya besin ve oksijen sağlamak için çalışan mikro makinelerdir.
Elektron mikroskobuyla elde edilen resimlerde, bu canlıların etkileyici güzellikleri, her türlü geometrik şekil kullanılarak elde edilmiş mükemmel simetrileri hepsinin tek tek üstün bir Yaratıcının eseri olduğunu ortaya koymaktadır. Aynı hücreye sahip 10.000 farklı türdeki bu canlıların birbirine hiç benzemeyen şekillere sahip olmaları, bu şekillerin sadece estetik amaçlı olması, hücrenin bu şekilleri oluşturmak için selüloz gibi karmaşık liflerden oluşmuş silisli bir yapıya şekil vermesi, olayları tesadüfle açıklamaya çalışan çevreleri çaresiz bırakmaktadır.88 Ayrıca evrimcilerin ilkel ve basit canlılar olarak nitelendirdikleri bu canlıların, hücre duvarlarını oluşturmak için kullandıkları yapılar incelendiğinde onların hiç de basit ve ilkel olmadıklarını görürüz. Dokuların üretimi için kullanılan organik poliamin, karmaşık bir kimyasal maddedir ve birçok canlı tarafından kullanılmaktadır. Ve bu canlılar hücre duvarlarını inşa ederken doğadaki en uzun organik poliamin zincirlerini kullanırlar.
Evrimcilerin ilkel olarak nitelendirdikleri bu tek hücrelilerin kompleks yapıları bununla da sınırlı değildir. Bu canlılar fotosentez yapan karmaşık klorofil pigmentlerinin yanı sıra, altın sarısı bir renk veren sarı "xantofil pigmenti"ne de sahiptirler. Balıklardaki D vitaminin en büyük kaynağı olan bu tek hücreli canlılar belirli bir amaç için tasarlanmış kompleks yapılara sahiptirler.89 Tesadüflerle ortaya çıkması mümkün olmayan özel yaratılmış bir sistemin parçasıdırlar.

SONUÇ : BİTKİYİ KİM YÖNETİYOR?


Kitap boyunca, bitkilerin en önemli özelliklerinden ikisini, yapraklarının sahip olduğu olağanüstü özellikleri ve fotosentez konusu incelendi. Bu bilgilerin verilme amacı ise, konu hakkında yazılmış olan diğer kitaplardan farklı olarak, bu canlıların ve sahip oldukları sistemlerin tesadüfler sonucunda oluşamayacaklarını göstermekti.
Bitkiler eli, gözü, beyni bulunmayan, karar verme, irade kullanma, bilgi sahibi olma gibi bilince ve akla ait özellikler taşımayan varlıklardır. Ancak buraya kadar anlatılan bilgilerde de görüldüğü gibi, bitkilerin sahip oldukları özellikler ve yaptıkları işlemler, büyük bir akıl ve bilinç gerektirmektedir. Hatta, akıl, bilinç ve bilgi sahibi, yüksek bir teknolojiye hükmeden insanın taklit dahi edemediği, nasıl olduğunu anlayamadığı işlemleri yeryüzünün her yerindeki bitkiler, saniyenin milyarda biri kadar kısa bir sürede yapmayı başarabilmektedir. Öyle ise insan aklının dahi yetişemediği bu akıl kime aittir?
Elbette ki her bitki ilk yaratıldığı günden itibaren, onu yaratan sonsuz ilim ve akıl sahibi Allah'ın ilham ettiği şekilde hareket etmektedir. Bitkinin her hücresinin, hatta her atomunun nasıl hareket etmesi gerektiği, an ve an ona bildirilmektedir. Bu gerçek bir Kuran ayetinde şöyle açıklanmaktadır:

Allah, yedi göğü ve yerden de onların benzerini yarattı. Emir, bunların arasında durmadan iner; sizin gerçekten Allah'ın her şeye güç yetirdiğini ve gerçekten Allah'ın ilmiyle her şeyi kuşattığını bilmeniz, öğrenmeniz için. (Talak Suresi, 12)

Bitkiler dünyasında karşılaştığımız bütün bu mucizeler bize açıkça göstermektedir ki, bütün bitkiler sahip oldukları tasarım, yaptıkları işler ve sahip oldukları sistemlerle, üstün bir kudret tarafından, belirli bir amaçla yaratılmışlardır. Bu yaratılışta hem sonsuz bir ilim hem de büyük bir sanat kullanılmıştır. Bütün bu sıfatlar ise alemlerin yaratıcısı olan Allah'a aittir. Bir ayette şöyle buyrulur:

Şüphesiz, göklerin ve yerin yaratılmasında, gece ile gündüzün ard arda gelişinde, insanlara yararlı şeyler ile denizde yüzen gemilerde, Allah'ın yağdırdığı ve kendisiyle yeryüzünü ölümünden sonra dirilttiği suda, her canlıyı orada üretip-yaymasında, rüzgarları estirmesinde, gökle yer arasında boyun eğdirilmiş bulutları evirip çevirmesinde düşünen bir topluluk için gerçekten ayetler vardır. (Bakara Suresi, 164)
EVRİM YANILGISI

Darwinizm, yani evrim teorisi, yaratılış gerçeğini reddetmek amacıyla ortaya atılmış, ancak başarılı olamamış bilim dışı bir safsatadan başka bir şey değildir. Canlılığın, cansız maddelerden tesadüfen oluştuğunu iddia eden bu teori, evrende ve canlılarda çok açık bir "tasarım" bulunduğunun bilim tarafından ispat edilmesiyle çürümüştür. Böylece Allah'ın tüm evreni ve canlıları yaratmış olduğu gerçeği, bilim tarafından da kanıtlanmıştır. Bugün evrim teorisini ayakta tutmak için dünya çapında yürütülen propaganda, sadece bilimsel gerçeklerin çarpıtılmasına, taraflı yorumlanmasına, bilim görüntüsü altında söylenen yalanlara ve yapılan sahtekarlıklara dayalıdır.
Ancak bu propaganda gerçeği gizleyememektedir. Evrim teorisinin bilim tarihindeki en büyük yanılgı olduğu, son 20-30 yıldır bilim dünyasında giderek daha yüksek sesle dile getirilmektedir. Özellikle 1980'lerden sonra yapılan araştırmalar, Darwinist iddiaların tamamen yanlış olduğunu ortaya koymuş ve bu gerçek pek çok bilim adamı tarafından dile getirilmiştir. Özellikle ABD'de, biyoloji, biyokimya, paleontoloji gibi farklı alanlardan gelen çok sayıda bilim adamı, Darwinizm'in geçersizliğini görmekte, canlıların kökenini artık "bilinçli tasarım" (intelligent design) kavramıyla açıklamaktadırlar. Söz konusu "bilinçli tasarım", tüm canlıların Allah tarafından yaratılmış oldukları gerçeğinin bilimsel bir ifadesidir.
Evrim teorisinin çöküşünü ve yaratılışın delillerini diğer pek çok çalışmamızda bütün bilimsel detaylarıyla ele aldık ve almaya devam ediyoruz. Ancak konuyu, taşıdığı büyük önem nedeniyle, burada da özetlemekte yarar vardır.


Darwin'i Yıkan Zorluklar

Evrim teorisi, tarihi eski Yunan'a kadar uzanan bir öğreti olmasına karşın, kapsamlı olarak 19. yüzyılda ortaya atıldı. Teoriyi bilim dünyasının gündemine sokan en önemli gelişme, Charles Darwin'in 1859 yılında yayınlanan Türlerin Kökeni adlı kitabıydı. Darwin bu kitapta dünya üzerindeki farklı canlı türlerinin Allah tarafından ayrı ayrı yaratıldıklarına karşı çıkıyordu. Darwin'e göre, tüm türler ortak bir atadan geliyorlardı ve zaman içinde küçük değişimlerle farklılaşmışlardı.
Darwin'in teorisi, hiçbir somut bilimsel bulguya dayanmıyordu; kendisinin de kabul ettiği gibi sadece bir "mantık yürütme" idi. Hatta, Darwin'in kitabındaki "Teorinin Zorlukları" başlıklı uzun bölümde itiraf ettiği gibi, teori pek çok önemli soru karşısında açık veriyordu.
Darwin, teorisinin önündeki zorlukların gelişen bilim tarafından aşılacağını, yeni bilimsel bulguların teorisini güçlendireceğini umuyordu. Bunu kitabında sık sık belirtmişti. Ancak gelişen bilim, Darwin'in umutlarının tam aksine, teorinin temel iddialarını birer birer dayanaksız bırakmıştır.
Darwinizm'in bilim karşısındaki yenilgisi, üç temel başlıkta incelenebilir:
1) Teori, hayatın yeryüzünde ilk kez nasıl ortaya çıktığını asla açıklayamamaktadır.
2) Teorinin öne sürdüğü "evrim mekanizmaları"nın, gerçekte evrimleştirici bir etkiye sahip olduğunu gösteren hiçbir bilimsel bulgu yoktur.
3) Fosil kayıtları, evrim teorisinin öngörülerinin tam aksine bir tablo ortaya koymaktadır.
Bu bölümde, bu üç temel başlığı ana hatları ile inceleyeceğiz.


Aşılamayan İlk Basamak: Hayatın Kökeni

Evrim teorisi, tüm canlı türlerinin, bundan yaklaşık 3.8 milyar yıl önce ilkel dünyada ortaya çıkan tek bir canlı hücreden geldiklerini iddia etmektedir. Tek bir hücrenin nasıl olup da milyonlarca kompleks canlı türünü oluşturduğu ve eğer gerçekten bu tür bir evrim gerçekleşmişse neden bunun izlerinin fosil kayıtlarında bulunamadığı, teorinin açıklayamadığı sorulardır. Ancak tüm bunlardan önce, iddia edilen evrim sürecinin ilk basamağı üzerinde durmak gerekir. Sözü edilen o "ilk hücre" nasıl ortaya çıkmıştır?
Evrim teorisi, yaratılışı reddettiği, hiçbir doğaüstü müdahaleyi kabul etmediği için, o "ilk hücre"nin, hiçbir tasarım, plan ve düzenleme olmadan, doğa kanunları içinde rastlantısal olarak meydana geldiğini iddia eder. Yani teoriye göre, cansız madde tesadüfler sonucunda ortaya canlı bir hücre çıkarmış olmalıdır. Ancak bu, bilinen en temel biyoloji kanunlarına aykırı bir iddiadır.


'Hayat Hayattan Gelir'

Darwin, kitabında hayatın kökeni konusundan hiç söz etmemişti. Çünkü onun dönemindeki ilkel bilim anlayışı, canlıların çok basit bir yapıya sahip olduklarını varsayıyordu. Ortaçağ'dan beri inanılan "spontane jenerasyon" adlı teoriye göre, cansız maddelerin tesadüfen biraraya gelip, canlı bir varlık oluşturabileceklerine inanılıyordu. Bu dönemde böceklerin yemek artıklarından, farelerin de buğdaydan oluştuğu yaygın bir düşünceydi. Bunu ispatlamak için de ilginç deneyler yapılmıştı. Kirli bir paçavranın üzerine biraz buğday konmuş ve biraz beklendiğinde bu karışımdan farelerin oluşacağı sanılmıştı.
Etlerin kurtlanması da hayatın cansız maddelerden türeyebildiğine bir delil sayılıyordu. Oysa daha sonra anlaşılacaktı ki, etlerin üzerindeki kurtlar kendiliklerinden oluşmuyorlar, sineklerin getirip bıraktıkları gözle görülmeyen larvalardan çıkıyorlardı.
Darwin'in Türlerin Kökeni adlı kitabını yazdığı dönemde ise, bakterilerin cansız maddeden oluşabildikleri inancı, bilim dünyasında yaygın bir kabul görüyordu.
Oysa Darwin'in kitabının yayınlanmasından beş yıl sonra, ünlü Fransız biyolog Louis Pasteur, evrime temel oluşturan bu inancı kesin olarak çürüttü. Pasteur yaptığı uzun çalışma ve deneyler sonucunda vardığı sonucu şöyle özetlemişti: "Cansız maddelerin hayat oluşturabileceği iddiası artık kesin olarak tarihe gömülmüştür."89
Evrim teorisinin savunucuları, Pasteur'ün bulgularına karşı uzun süre direndiler. Ancak gelişen bilim, canlı hücresinin karmaşık yapısını ortaya çıkardıkça, hayatın kendiliğinden oluşabileceği iddiasının geçersizliği daha da açık hale geldi.


20. Yüzyıldaki Sonuçsuz Çabalar

20. yüzyılda hayatın kökeni konusunu ele alan ilk evrimci, ünlü Rus biyolog Alexander Oparin oldu. Oparin, 1930'lu yıllarda ortaya attığı birtakım tezlerle, canlı hücresinin tesadüfen meydana gelebileceğini ispat etmeye çalıştı. Ancak bu çalışmalar başarısızlıkla sonuçlanacak ve Oparin şu itirafı yapmak zorunda kalacaktı: "Maalesef hücrenin kökeni, evrim teorisinin tümünü içine alan en karanlık noktayı oluşturmaktadır."91
Oparin'in yolunu izleyen evrimciler, hayatın kökeni konusunu çözüme kavuşturacak deneyler yapmaya çalıştılar. Bu deneylerin en ünlüsü, Amerikalı kimyacı Stanley Miller tarafından 1953 yılında düzenlendi. Miller, ilkel dünya atmosferinde olduğunu iddia ettiği gazları bir deney düzeneğinde birleştirerek ve bu karışıma enerji ekleyerek, proteinlerin yapısında kullanılan birkaç organik molekül (aminoasit) sentezledi.
O yıllarda evrim adına önemli bir aşama gibi tanıtılan bu deneyin geçerli olmadığı ve deneyde kullanılan atmosferin gerçek dünya koşullarından çok farklı olduğu, ilerleyen yıllarda ortaya çıkacaktı.92
Uzun süren bir sessizlikten sonra Miller'in kendisi de kullandığı atmosfer ortamının gerçekçi olmadığını itiraf etti.93
Hayatın kökeni sorununu açıklamak için 20. yüzyıl boyunca yürütülen tüm evrimci çabalar hep başarısızlıkla sonuçlandı. San Diego Scripps Enstitüsü'nden ünlü jeokimyacı Jeffrey Bada, evrimci Earth dergisinde 1998 yılında yayınlanan bir makalede bu gerçeği şöyle kabul eder:
Bugün, 20. yüzyılı geride bırakırken, hala, 20. yüzyıla girdiğimizde sahip olduğumuz en büyük çözülmemiş problemle karşı karşıyayız: Hayat yeryüzünde nasıl başladı? 94


Hayatın Kompleks Yapısı

Evrim teorisinin hayatın kökeni konusunda bu denli büyük bir açmaza girmesinin başlıca nedeni, en basit sanılan canlı yapıların bile inanılmaz derecede karmaşık yapılara sahip olmasıdır. Canlı hücresi, insanoğlunun yaptığı bütün teknolojik ürünlerden daha karmaşıktır. Öyle ki bugün dünyanın en gelişmiş laboratuvarlarında bile cansız maddeler biraraya getirilerek canlı bir hücre üretilememektedir.
Bir hücrenin meydana gelmesi için gereken şartlar, asla rastlantılarla açıklanamayacak kadar fazladır. Hücrenin en temel yapı taşı olan proteinlerin rastlantısal olarak sentezlenme ihtimali; 500 aminoasitlik ortalama bir protein için, 10950'de 1'dir. Ancak matematikte 1050'de 1'den küçük olasılıklar pratik olarak "imkansız" sayılırlar.
Hücrenin çekirdeğinde yer alan ve genetik bilgiyi saklayan DNA molekülü ise, inanılmaz bir bilgi bankasıdır. İnsan DNA'sının içerdiği bilginin, eğer kağıda dökülmeye kalkılsa, 500'er sayfadan oluşan 900 ciltlik bir kütüphane oluşturacağı hesaplanmaktadır.
Bu noktada çok ilginç bir ikilem daha vardır: DNA, yalnız birtakım özelleşmiş proteinlerin (enzimlerin) yardımı ile eşlenebilir. Ama bu enzimlerin sentezi de ancak DNA'daki bilgiler doğrultusunda gerçekleşir. Birbirine bağımlı olduklarından, eşlemenin meydana gelebilmesi için ikisinin de aynı anda var olmaları gerekir. Bu ise, hayatın kendiliğinden oluştuğu senaryosunu çıkmaza sokmaktadır. San Diego California Üniversitesi'nden ünlü evrimci Prof. Leslie Orgel, Scientific American dergisinin Ekim 1994 tarihli sayısında bu gerçeği şöyle itiraf eder:
Son derece kompleks yapılara sahip olan proteinlerin ve nükleik asitlerin (RNA ve DNA) aynı yerde ve aynı zamanda rastlantısal olarak oluşmaları aşırı derecede ihtimal dışıdır. Ama bunların birisi olmadan diğerini elde etmek de mümkün değildir. Dolayısıyla insan, yaşamın kimyasal yollarla ortaya çıkmasının asla mümkün olmadığı sonucuna varmak zorunda kalmaktadır. 95
Kuşkusuz eğer hayatın doğal etkenlerle ortaya çıkması imkansız ise, bu durumda hayatın doğaüstü bir biçimde "yaratıldığını" kabul etmek gerekir. Bu gerçek, en temel amacı yaratılışı reddetmek olan evrim teorisini açıkça geçersiz kılmaktadır.


Evrimin Hayali Mekanizmaları

Darwin'in teorisini geçersiz kılan ikinci büyük nokta, teorinin "evrim mekanizmaları" olarak öne sürdüğü iki kavramın da gerçekte hiçbir evrimleştirici güce sahip olmadığının anlaşılmış olmasıdır.
Darwin, ortaya attığı evrim iddiasını tamamen "doğal seleksiyon" mekanizmasına bağlamıştı. Bu mekanizmaya verdiği önem, kitabının isminden de açıkça anlaşılıyordu: Türlerin Kökeni, Doğal Seleksiyon Yoluyla...
Doğal seleksiyon, doğal seçme demektir. Doğadaki yaşam mücadelesi içinde, doğal şartlara uygun ve güçlü canlıların hayatta kalacağı düşüncesine dayanır. Örneğin yırtıcı hayvanlar tarafından tehdit edilen bir geyik sürüsünde, daha hızlı koşabilen geyikler hayatta kalacaktır. Böylece geyik sürüsü, hızlı ve güçlü bireylerden oluşacaktır. Ama elbette bu mekanizma, geyikleri evrimleştirmez, onları başka bir canlı türüne, örneğin atlara dönüştürmez.
Dolayısıyla doğal seleksiyon mekanizması hiçbir evrimleştirici güce sahip değildir. Darwin de bu gerçeğin farkındaydı ve Türlerin Kökeni adlı kitabında "Faydalı değişiklikler oluşmadığı sürece doğal seleksiyon hiçbir şey yapamaz" demek zorunda kalmıştı.96



Lamarck'ın Etkisi

Peki bu "faydalı değişiklikler" nasıl oluşabilirdi? Darwin, kendi döneminin ilkel bilim anlayışı içinde, bu soruyu Lamarck'a dayanarak cevaplamaya çalışmıştı. Darwin'den önce yaşamış olan Fransız biyolog Lamarck'a göre, canlılar yaşamları sırasında geçirdikleri fiziksel değişiklikleri sonraki nesle aktarıyorlar, nesilden nesile biriken bu özellikler sonucunda yeni türler ortaya çıkıyordu. Örneğin Lamarck'a göre zürafalar ceylanlardan türemişlerdi, yüksek ağaçların yapraklarını yemek için çabalarken nesilden nesile boyunları uzamıştı.
Darwin de benzeri örnekler vermiş, örneğin Türlerin Kökeni adlı kitabında, yiyecek bulmak için suya giren bazı ayıların zamanla balinalara dönüştüğünü iddia etmişti.97
Ama Mendel'in keşfettiği ve 20. yüzyılda gelişen genetik bilimiyle kesinleşen kalıtım kanunları, kazanılmış özelliklerin sonraki nesillere aktarılması efsanesini kesin olarak yıktı. Böylece doğal seleksiyon "tek başına" ve dolayısıyla tümüyle etkisiz bir mekanizma olarak kalmış oluyordu.


Neo-Darwinizm Ve Mutasyonlar

Darwinistler ise bu duruma bir çözüm bulabilmek için 1930'ların sonlarında, "Modern Sentetik Teori"yi, ya da daha yaygın ismiyle Neo-Darwinizm'i ortaya attılar. Neo-Darwinizm, doğal seleksiyonun yanına "faydalı değişiklik sebebi" olarak mutasyonları, yani canlıların genlerinde radyasyon gibi dış etkiler ya da kopyalama hataları sonucunda oluşan bozulmaları ekledi.
Bugün de hala dünyada evrim adına geçerliliğini koruyan model Neo-Darwinizm'dir. Teori, yeryüzünde bulunan milyonlarca canlı türünün, bu canlıların, kulak, göz, akciğer, kanat gibi sayısız kompleks organlarının "mutasyonlara", yani genetik bozukluklara dayalı bir süreç sonucunda oluştuğunu iddia etmektedir. Ama teoriyi çaresiz bırakan açık bir bilimsel gerçek vardır: Mutasyonlar canlıları geliştirmezler, aksine her zaman için canlılara zarar verirler.
Bunun nedeni çok basittir: DNA çok kompleks bir düzene sahiptir. Bu molekül üzerinde oluşan herhangi rasgele bir etki ancak zarar verir. Amerikalı genetikçi B. G. Ranganathan bunu şöyle açıklar:
Mutasyonlar küçük, rasgele ve zararlıdırlar. Çok ender olarak meydana gelirler ve en iyi ihtimalle etkisizdirler. Bu üç özellik, mutasyonların evrimsel bir gelişme meydana getiremeyeceğini gösterir. Zaten yüksek derecede özelleşmiş bir organizmada meydana gelebilecek rastlantısal bir değişim, ya etkisiz olacaktır ya da zararlı. Bir kol saatinde meydana gelecek rasgele bir değişim kol saatini geliştirmeyecektir. Ona büyük ihtimalle zarar verecek veya en iyi ihtimalle etkisiz olacaktır. Bir deprem bir şehri geliştirmez, ona yıkım getirir.98
Nitekim bugüne kadar hiçbir yararlı, yani genetik bilgiyi geliştiren mutasyon örneği gözlemlenmedi. Tüm mutasyonların zararlı olduğu görüldü. Anlaşıldı ki, evrim teorisinin "evrim mekanizması" olarak gösterdiği mutasyonlar, gerçekte canlıları sadece tahrip eden, sakat bırakan bir genetik olaydır. (İnsanlarda mutasyonun en sık görülen etkisi de kanserdir.) Elbette tahrip edici bir mekanizma "evrim mekanizması" olamaz. Doğal seleksiyon ise, Darwin'in de kabul ettiği gibi, "tek başına hiçbir şey yapamaz." Bu gerçek bizlere doğada hiçbir "evrim mekanizması" olmadığını göstermektedir. Evrim mekanizması olmadığına göre de, evrim denen hayali süreç yaşanmış olamaz.


Fosil Kayıtları: Ara Formlardan Eser Yok

Evrim teorisinin iddia ettiği senaryonun yaşanmış olmadığının en açık göstergesi ise fosil kayıtlarıdır.
Evrim teorisine göre bütün canlılar birbirlerinden türemişlerdir. Önceden var olan bir canlı türü, zamanla bir diğerine dönüşmüş ve bütün türler bu şekilde ortaya çıkmışlardır. Teoriye göre bu dönüşüm yüz milyonlarca senelik uzun bir zaman dilimini kapsamış ve kademe kademe ilerlemiştir. Bu durumda, iddia edilen uzun dönüşüm süreci içinde sayısız "ara türler"in oluşmuş ve yaşamış olmaları gerekir.
Örneğin geçmişte, balık özelliklerini hala taşımalarına rağmen, bir yandan da bazı sürüngen özellikleri kazanmış olan yarı balık-yarı sürüngen canlılar yaşamış olmalıdır. Ya da sürüngen özelliklerini taşırken, bir yandan da bazı kuş özellikleri kazanmış sürüngen-kuşlar ortaya çıkmış olmalıdır. Bunlar, bir geçiş sürecinde oldukları için de, sakat, eksik, kusurlu canlılar olmalıdır. Evrimciler geçmişte yaşamış olduklarına inandıkları bu teorik yaratıklara "ara-geçiş formu" adını verirler.
Eğer gerçekten bu tür canlılar geçmişte yaşamışlarsa bunların sayılarının ve çeşitlerinin milyonlarca hatta milyarlarca olması gerekir. Ve bu ucube canlıların kalıntılarına mutlaka fosil kayıtlarında rastlanması gerekir. Darwin, Türlerin Kökeni'nde bunu şöyle açıklamıştır:
Eğer teorim doğruysa, türleri birbirine bağlayan sayısız ara-geçiş çeşitleri mutlaka yaşamış olmalıdır... Bunların yaşamış olduklarının kanıtları da sadece fosil kalıntıları arasında bulunabilir.99


Darwin'in Yıkılan Umutları

Ancak 19. yüzyılın ortasından bu yana dünyanın dört bir yanında hummalı fosil araştırmaları yapıldığı halde bu ara geçiş formlarına rastlanamamıştır. Yapılan kazılarda ve araştırmalarda elde edilen bütün bulgular, evrimcilerin beklediklerinin aksine, canlıların yeryüzünde birdenbire, eksiksiz ve kusursuz bir biçimde ortaya çıktıklarını göstermiştir.
Ünlü İngiliz paleontolog (fosil bilimci) Derek W. Ager, bir evrimci olmasına karşın bu gerçeği şöyle itiraf eder:
Sorunumuz şudur: Fosil kayıtlarını detaylı olarak incelediğimizde, türler ya da sınıflar seviyesinde olsun, sürekli olarak aynı gerçekle karşılaşırız; kademeli evrimle gelişen değil, aniden yeryüzünde oluşan gruplar görürüz.100
Yani fosil kayıtlarında, tüm canlı türleri, aralarında hiçbir geçiş formu olmadan eksiksiz biçimleriyle aniden ortaya çıkmaktadırlar. Bu, Darwin'in öngörülerinin tam aksidir. Dahası, bu canlı türlerinin yaratıldıklarını gösteren çok güçlü bir delildir. Çünkü bir canlı türünün, kendisinden evrimleştiği hiçbir atası olmadan, bir anda ve kusursuz olarak ortaya çıkmasının tek açıklaması, o türün yaratılmış olmasıdır. Bu gerçek, ünlü evrimci biyolog Douglas Futuyma tarafından da kabul edilir:
Yaratılış ve evrim, yaşayan canlıların kökeni hakkında yapılabilecek yegane iki açıklamadır. Canlılar dünya üzerinde ya tamamen mükemmel ve eksiksiz bir biçimde ortaya çıkmışlardır ya da böyle olmamıştır. Eğer böyle olmadıysa, bir değişim süreci sayesinde kendilerinden önce var olan bazı canlı türlerinden evrimleşerek meydana gelmiş olmalıdırlar. Ama eğer eksiksiz ve mükemmel bir biçimde ortaya çıkmışlarsa, o halde sonsuz güç sahibi bir akıl tarafından yaratılmış olmaları gerekir.101
Fosiller ise, canlıların yeryüzünde eksiksiz ve mükemmel bir biçimde ortaya çıktıklarını göstermektedir. Yani "türlerin kökeni", Darwin'in sandığının aksine, evrim değil yaratılıştır.


İnsanın Evrimi Masalı

Evrim teorisini savunanların en çok gündeme getirdikleri konu, insanın kökeni konusudur. Bu konudaki Darwinist iddia, bugün yaşayan modern insanın maymunsu birtakım yaratıklardan geldiğini varsayar. 4-5 milyon yıl önce başladığı varsayılan bu süreçte, modern insan ile ataları arasında bazı "ara form"ların yaşadığı iddia edilir. Gerçekte tümüyle hayali olan bu senaryoda dört temel "kategori" sayılır:
1— Australopithecus
2— Homo habilis
3— Homo erectus
4— Homo sapiens
Evrimciler, insanların sözde ilk maymunsu atalarına "güney maymunu" anlamına gelen "Australopithecus" ismini verirler. Bu canlılar gerçekte soyu tükenmiş bir maymun türünden başka bir şey değildir. Lord Solly Zuckerman ve Prof. Charles Oxnard gibi İngiltere ve ABD'den dünyaca ünlü iki anatomistin Australopithecus örnekleri üzerinde yaptıkları çok geniş kapsamlı çalışmalar, bu canlıların sadece soyu tükenmiş bir maymun türüne ait olduklarını ve insanlarla hiçbir benzerlik taşımadıklarını göstermiştir.102
İnsan evriminin bir sonraki safhasını da evrimciler, "homo" yani insan olarak sınıflandırırlar. İddiaya göre homo serisindeki canlılar, Australopithecuslar'dan daha gelişmişlerdir. Evrimciler, bu farklı canlılara ait fosilleri ardı ardına dizerek hayali bir evrim şeması oluştururlar. Bu şema hayalidir, çünkü gerçekte bu farklı sınıfların arasında evrimsel bir ilişki olduğu asla ispatlanamamıştır. Evrim teorisinin 20. yüzyıldaki en önemli savunucularından biri olan Ernst Mayr, "Homo sapiens'e uzanan zincir gerçekte kayıptır" diyerek bunu kabul eder.103
Evrimciler "Australopithecus > Homo habilis > Homo erectus > Homo sapiens" sıralamasını yazarken, bu türlerin her birinin, bir sonrakinin atası olduğu izlenimini verirler. Oysa paleoantropologların son bulguları, Australopithecus, Homo habilis ve Homo erectus'un dünya'nın farklı bölgelerinde aynı dönemlerde yaşadıklarını göstermektedir.104
Dahası Homo erectus sınıflamasına ait insanların bir bölümü çok modern zamanlara kadar yaşamışlar, Homo sapiens neandertalensis ve Homo sapiens sapiens (modern insan) ile aynı ortamda yan yana bulunmuşlardır.105
Bu ise elbette bu sınıfların birbirlerinin ataları oldukları iddiasının geçersizliğini açıkça ortaya koymaktadır. Harvard Üniversitesi paleontologlarından Stephen Jay Gould, kendisi de bir evrimci olmasına karşın, Darwinist teorinin içine girdiği bu çıkmazı şöyle açıklar:
Eğer birbiri ile paralel bir biçimde yaşayan üç farklı hominid (insanımsı) çizgisi varsa, o halde bizim soy ağacımıza ne oldu? Açıktır ki bunların biri diğerinden gelmiş olamaz. Dahası, biri diğeriyle karşılaştırıldığında evrimsel bir gelişme trendi göstermemektedirler.106
Kısacası, medyada ya da ders kitaplarında yer alan hayali birtakım "yarı maymun, yarı insan" canlıların çizimleriyle, yani sırf propaganda yoluyla ayakta tutulmaya çalışılan insanın evrimi senaryosu, hiçbir bilimsel temeli olmayan bir masaldan ibarettir.
Bu konuyu uzun yıllar inceleyen, özellikle Australopithecus fosilleri üzerinde 15 yıl araştırma yapan İngiltere'nin en ünlü ve saygın bilim adamlarından Lord Solly Zuckerman, bir evrimci olmasına rağmen, ortada maymunsu canlılardan insana uzanan gerçek bir soy ağacı olmadığı sonucuna varmıştır.
Zuckerman bir de ilginç bir "bilim skalası" yapmıştır. Bilimsel olarak kabul ettiği bilgi dallarından, bilim dışı olarak kabul ettiği bilgi dallarına kadar bir yelpaze oluşturmuştur. Zuckerman'ın bu tablosuna göre en "bilimsel" -yani somut verilere dayanan- bilgi dalları kimya ve fiziktir. Yelpazede bunlardan sonra biyoloji bilimleri, sonra da sosyal bilimler gelir. Yelpazenin en ucunda, yani en "bilim dışı" sayılan kısımda ise, Zuckerman'a göre, telepati, altıncı his gibi "duyum ötesi algılama" kavramları ve bir de "insanın evrimi" vardır! Zuckerman, yelpazenin bu ucunu şöyle açıklar:
Objektif gerçekliğin alanından çıkıp da, biyolojik bilim olarak varsayılan bu alanlara—yani duyum ötesi algılamaya ve insanın fosil tarihinin yorumlanmasına—girdiğimizde, evrim teorisine inanan bir kimse için herşeyin mümkün olduğunu görürüz. Öyle ki teorilerine kesinlikle inanan bu kimselerin çelişkili bazı yargıları aynı anda kabul etmeleri bile mümkündür.107
İşte insanın evrimi masalı da, teorilerine körü körüne inanan birtakım insanların buldukları bazı fosilleri ön yargılı bir biçimde yorumlamalarından ibarettir.



Göz Ve Kulaktaki Teknoloji

Evrim teorisinin kesinlikle açıklama getiremeyeceği bir diğer konu ise göz ve kulaktaki üstün algılama kalitesidir.
Gözle ilgili konuya geçmeden önce "nasıl görürüz" sorusuna kısaca cevap verelim. Bir cisimden gelen ışınlar gözde retinaya ters olarak düşerler. Bu ışınlar, buradaki hücreler tarafından elektrik sinyallerine dönüştürülür ve beynin arka kısmındaki görme merkezi denilen küçücük bir noktaya ulaşırlar. Bu elektrik sinyalleri bir dizi işlemden sonra beyindeki bu merkezde görüntü olarak algılanır. Bu bilgiden sonra şimdi düşünelim:
Beyin ışığa kapalıdır. Yani beynin içi kapkaranlıktır, ışık beynin bulunduğu yere kadar giremez. Görüntü merkezi denilen yer kapkaranlık, ışığın asla ulaşmadığı, belki de hiç karşılaşmadığınız kadar karanlık bir yerdir. Ancak siz bu zifiri karanlıkta ışıklı, pırıl pırıl bir dünyayı seyretmektesiniz.
Üstelik bu o kadar net ve kaliteli bir görüntüdür ki 21. yüzyıl teknolojisi bile bu netliği her türlü imkana rağmen sağlayamamıştır. Örneğin şu anda okuduğunuz kitaba, kitabı tutan ellerinize bakın, sonra başınızı kaldırın ve çevrenize bakın. Bu gördüğünüz netlikte ve kalitedeki bir görüntüyü başka bir yerde gördünüz mü? Bu kadar net bir görüntüyü size dünyanın bir numaralı televizyon şirketinin ürettiği en gelişmiş televizyon ekranı dahi veremez. 100 yıldır binlerce mühendis bu netliğe ulaşmaya çalışmaktadır. Bunun için fabrikalar, dev tesisler kurulmakta, araştırmalar yapılmakta, planlar ve tasarımlar geliştirilmektedir. Yine bir TV ekranına bakın, bir de şu anda elinizde tuttuğunuz bu kitaba. Arada büyük bir netlik ve kalite farkı olduğunu göreceksiniz. Üstelik, TV ekranı size iki boyutlu bir görüntü gösterir, oysa siz üç boyutlu, derinlikli bir perspektifi izlemektesiniz.
Uzun yıllardır, onbinlerce mühendis üç boyutlu TV yapmaya, gözün görme kalitesine ulaşmaya çalışmaktalar. Evet üç boyutlu bir televizyon sistemi yapabildiler ama onu da gözlük takmadan üç boyutlu görmek mümkün değil, kaldı ki bu suni bir üç boyuttur. Arka taraf daha bulanık, ön taraf ise kağıttan dekor gibi durur. Hiçbir zaman gözün gördüğü kadar net ve kaliteli bir görüntü oluşmaz. Kamerada da, televizyonda da mutlaka görüntü kaybı meydana gelir.
İşte evrimciler, bu kaliteli ve net görüntüyü oluşturan mekanizmanın tesadüfen oluştuğunu iddia etmektedirler. Şimdi biri size, odanızda duran televizyon tesadüfler sonucunda oluştu, atomlar biraraya geldiler ve bu görüntü oluşturan aleti meydana getirdiler dese ne düşünürsünüz? Binlerce kişinin biraraya gelip yapamadığını şuursuz atomlar nasıl yapsın?
Gözün gördüğünden daha ilkel olan bir görüntüyü oluşturan alet tesadüfen oluşamıyorsa, gözün ve gözün gördüğü görüntünün de tesadüfen oluşamayacağı çok açıktır. Aynı durum kulak için de geçerlidir. Dış kulak, çevredeki sesleri kulak kepçesi vasıtasıyla toplayıp orta kulağa iletir; orta kulak aldığı ses titreşimlerini güçlendirerek iç kulağa aktarır; iç kulak da bu titreşimleri elektrik sinyallerine dönüştürerek beyne gönderir. Aynen görmede olduğu gibi duyma işlemi de beyindeki duyma merkezinde gerçekleşir.
Gözdeki durum kulak için de geçerlidir, yani beyin ışık gibi sese de kapalıdır, ses geçirmez. Dolayısıyla dışarısı ne kadar gürültülü de olsa beynin içi tamamen sessizdir. Buna rağmen en net sesler beyinde algılanır. Ses geçirmeyen beyninizde bir orkestranın senfonilerini dinlersiniz, kalabalık bir ortamın tüm gürültüsünü duyarsınız. Ama o anda hassas bir cihazla beyninizin içindeki ses düzeyi ölçülse, burada keskin bir sessizliğin hakim olduğu görülecektir.
Net bir görüntü elde edebilmek ümidiyle teknoloji nasıl kullanılıyorsa, ses için de aynı çabalar onlarca yıldır sürdürülmektedir. Ses kayıt cihazları, müzik setleri, birçok elektronik alet, sesi algılayan müzik sistemleri bu çalışmalardan bazılarıdır. Ancak, tüm teknolojiye, bu teknolojide çalışan binlerce mühendise ve uzmana rağmen kulağın oluşturduğu netlik ve kalitede bir sese ulaşılamamıştır. En büyük müzik sistemi şirketinin ürettiği en kaliteli müzik setini düşünün. Sesi kaydettiğinde mutlaka sesin bir kısmı kaybolur veya az da olsa mutlaka parazit oluşur veya müzik setini açtığınızda daha müzik başlamadan bir cızırtı mutlaka duyarsınız. Ancak insan vücudundaki teknolojinin ürünü olan sesler son derece net ve kusursuzdur. Bir insan kulağı, hiçbir zaman müzik setinde olduğu gibi cızırtılı veya parazitli algılamaz; ses ne ise tam ve net bir biçimde onu algılar. Bu durum, insan yaratıldığı günden bu yana böyledir.
Şimdiye kadar insanoğlunun yaptığı hiçbir görüntü ve ses cihazı, göz ve kulak kadar hassas ve başarılı birer algılayıcı olamamıştır.
Ancak görme ve işitme olayında, tüm bunların ötesinde çok daha büyük bir gerçek daha vardır.

Beynin İçinde Gören Ve Duyan Şuur Kime Aittir?
Beynin içinde, ışıl ışıl renkli bir dünyayı seyreden, senfonileri, kuşların cıvıltılarını dinleyen, gülü koklayan kimdir?
İnsanın gözlerinden, kulaklarından, burnundan gelen uyarılar, elektrik sinyali olarak beyne gider. Biyoloji, fizyoloji veya biyokimya kitaplarında bu görüntünün beyinde nasıl oluştuğuna dair birçok detay okursunuz. Ancak, bu konu hakkındaki en önemli gerçeğe hiçbir yerde rastlayamazsınız: Beyinde, bu elektrik sinyallerini görüntü, ses, koku ve his olarak algılayan kimdir? Beynin içinde göze, kulağa, burna ihtiyaç duymadan tüm bunları algılayan bir şuur bulunmaktadır. Bu şuur kime aittir?
Elbette bu şuur beyni oluşturan sinirler, yağ tabakası ve sinir hücrelerine ait değildir. İşte bu yüzden, herşeyin maddeden ibaret olduğunu zanneden Darwinist-materyalistler bu sorulara hiçbir cevap verememektedirler.
Çünkü bu şuur, Allah'ın yaratmış olduğu ruhtur. Ruh, görüntüyü seyretmek için göze, sesi duymak için kulağa ihtiyaç duymaz. Bunların da ötesinde düşünmek için beyne ihtiyaç duymaz.
Bu açık ve ilmi gerçeği okuyan her insanın, beynin içindeki birkaç santimetreküplük, kapkaranlık mekana tüm kainatı üç boyutlu, renkli, gölgeli ve ışıklı olarak sığdıran Yüce Allah'ı düşünüp, O'ndan korkup, O'na sığınması gerekir.



Materyalist Bir İnanç

Buraya kadar incelediklerimiz, evrim teorisinin bilimsel bulgularla açıkça çelişen bir iddia olduğunu göstermektedir. Teorinin hayatın kökeni hakkındaki iddiası bilime aykırıdır, öne sürdüğü evrim mekanizmalarının hiçbir evrimleştirici etkisi yoktur ve fosiller teorinin gerektirdiği ara formların yaşamadıklarını göstermektedir. Bu durumda, elbette, evrim teorisinin bilime aykırı bir düşünce olarak bir kenara atılması gerekir. Nitekim tarih boyunca dünya merkezli evren modeli gibi pek çok düşünce, bilimin gündeminden çıkarılmıştır.
Ama evrim teorisi ısrarla bilimin gündeminde tutulmaktadır. Hatta bazı insanlar teorinin eleştirilmesini "bilime saldırı" olarak göstermeye bile çalışmaktadırlar. Peki neden?...
Bu durumun nedeni, evrim teorisinin bazı çevreler için, kendisinden asla vazgeçilemeyecek dogmatik bir inanış oluşudur. Bu çevreler, materyalist felsefeye körü körüne bağlıdırlar ve Darwinizm'i de doğaya getirilebilecek yegane materyalist açıklama olduğu için benimsemektedirler.
Bazen bunu açıkça itiraf da ederler. Harvard Üniversitesi'nden ünlü bir genetikçi ve aynı zamanda önde gelen bir evrimci olan Richard Lewontin, "önce materyalist, sonra bilim adamı" olduğunu şöyle itiraf etmektedir:
Bizim materyalizme bir inancımız var, 'a priori' (önceden kabul edilmiş, doğru varsayılmış) bir inanç bu. Bizi dünyaya materyalist bir açıklama getirmeye zorlayan şey, bilimin yöntemleri ve kuralları değil. Aksine, materyalizme olan 'a priori' bağlılığımız nedeniyle, dünyaya materyalist bir açıklama getiren araştırma yöntemlerini ve kavramları kurguluyoruz. Materyalizm mutlak doğru olduğuna göre de, İlahi bir açıklamanın sahneye girmesine izin veremeyiz.108
Bu sözler, Darwinizm'in, materyalist felsefeye bağlılık uğruna yaşatılan bir dogma olduğunun açık ifadeleridir. Bu dogma, maddeden başka hiçbir varlık olmadığını varsayar. Bu nedenle de cansız, bilinçsiz maddenin, hayatı yarattığına inanır. Milyonlarca farklı canlı türünün; örneğin kuşların, balıkların, zürafaların, kaplanların, böceklerin, ağaçların, çiçeklerin, balinaların ve insanların maddenin kendi içindeki etkileşimlerle, yani yağan yağmurla, çakan şimşekle, cansız maddenin içinden oluştuğunu kabul eder. Gerçekte ise bu, hem akla hem bilime aykırı bir kabuldür. Ama Darwinistler, "İlahi bir açıklamanın sahneye girmemesi" için, bu kabulü savunmaya devam etmektedirler.
Canlıların kökenine materyalist bir ön yargı ile bakmayan herkes ise, şu açık gerçeği görecektir: Tüm canlılar, üstün bir güç, bilgi ve akla sahip olan bir Yaratıcının eseridirler. Yaratıcı, tüm evreni yoktan var eden, en kusursuz biçimde düzenleyen ve tüm canlıları da yaratıp şekillendiren Allah'tır.

... Sen yücesin, bize öğrettiğinden başka bizim hiçbir bilgimiz yok.
Gerçekten Sen, herşeyi bilen, hüküm ve hikmet sahibi olansın.
(Bakara Suresi, 32)



NOTLAR

1 http://www.botany.hawaii.edu/faculty/webb/BOT410/Leaves/LeafMidrib.htm
2 Steven Vogel, Cats' Paws and Catapults-Mechanical Worlds of Nature and the People, New York 1998, s. 60-61
3 Steven Vogel, Cats' Paws and Catapults-Mechanical Worlds of Nature and the People, New York 1998, s. 60-61
4 T. J. Givnish, Plant stems: biomechanical adaptation for energy capture and influence on species distributions, s. 3-49 in B. L. Gartner (ed.), Plant Stems: Physiology and Functional Morphology. Chapman and Hall, New York 1995
5 T. J. Givnish, Plant stems: biomechanical adaptation for energy capture and influence on species distributions. s. 3-49 in B. L. Gartner (ed.), Plant Stems: Physiology and Functional Morphology. Chapman and Hall, New York 1995
6 Bitkiler, Görsel Kitaplar Dorling Kindersley, İtalya, 1996, s.37
7 Steven Vogel, Cats' Paws and Catapults-Mechanical Worlds of Nature and the People, New York 1998, s. 94-95
8 Steven Vogel, Cats' Paws and Catapults-Mechanical Worlds of Nature and the People, New York 1998, s. 94-95
9 Steven Vogel, Cats' Paws and Catapults-Mechanical Worlds of Nature and the People, New York 1998, s. 94-95
10 http://www.desertusa.com/du%5Fplantsurv.html
11 http://botany.about.com/science/botany/library/weekly/aa022900b.htm
12 http://www.botany.hawaii.edu/faculty/webb/BOT311/Leaves/LeafShape-1.htm,
http://botany.about.com/science/botany/library/weekly/aa020498.htm
13 Kingsley R.Stern, Introduction Plant Biology, Wm.C.Brown Publisher, USA, 1991, s.110
14 http://www.support.net/Medit-Plants/plants/Capparis.spinosa.html;
http://waynesword.palomar.edu/pljuly98.htm
15 http://www.desertusa.com/du%5Fplantsurv.html,
http://www.desertusa.com/nov96/du_ocotillo.html
16 http://botany.about.com/science/botany/library/weekly/aa103100a.htm,
http://botany.about.com/science/botany/library/weekly/aa052799.htm
17 Kingsley R.Stern, Introduction Plant Biology, Wm.C.Brown Publisher, USA, 1991, s.52
18 http://www.botgard.ucla.edu/html/botanytextbooks/generalbotany/typesofshoots/tendril/
19 Bilim ve Teknik, "Bitkilerin Duyuları", Haziran 2000, s.70
20 http://www.sarracenia.com/faq/faq5965.html
21 http://waynesword.palomar.edu/carnivor.htm
22 http://perso.wanadoo.fr/steven.piel/en_chouv.html, http://www.leafforlife.com/PAGES/BRASSICA.HTM, http://www.formda.com/beslenme/besin_ansiklopedisi_detay.asp?besinId=153
23 http://waynesword.palomar.edu/ecoph31.htm#spinach
24 Lesley Bremness, Herbs, Eyewitness Handbooks, Dorling Kundersley, Singapore, 1997, s.132
25 http://www.i5ive.com./article.cfm/historical_plants/49588
26 http://www.icr.org/goodsci/bot-9709.htm
27 Dr. Sara Akdik, Botanik, Şirketi Mürettibiye Basımevi, İstanbul, 1961, s.106
28 Guy Murchie, The Seven Mysteries Of Life, 1978, Abd, Houghton Mifflin Company, Boston, s. 57
29 Guy Murchie, The Seven Mysteries Of Life, s. 58-59
30 Guy Murchie, The Seven Mysteries Of Life, s. 58
31 Dr. Sara Akdik, Botanik, Şirketi Mürettibiye Basımevi, İstanbul, 1961, s.105-106
32 Paul Simons, "The Secret Feeling of Plant", New Scientist, vol 136, sayı 1843, 17 Ekim1992,
s.29
33 http://www.rrz.uni-hamburg.de/biologie/b_online/e05/05a.htm
34 http://www.rrz.uni-hamburg.de/biologie/b_online/e32/32f.htm#aba
35 http://botany.about.com/science/botany/library/weekly/aa020498b.htm
36 Kingsley R. Stern, Introductory Plant Biology, Wm.C.Brown Publishers, USA, 1991, s.55
37 Sylvia S. Mader, Inquiry into Life, Wm. C. Brown Publishers,USA, 1991, s.158-159
38 http://microscopy.fsu.edu/cells/plants/vacuole.html
39 http://www.rrz.uni-hamburg.de/biologie/b_online/ibc99/ibc/abstracts/listen/abstracts/4069.html, http://www.botany.hawaii.edu/faculty/webb/BOT201/Tmispteris/telome1.htm
40 http://www.ucmp.berkeley.edu/plants/lycophyta/lycomm.html
41 Bilim ve Teknik, Bitkilerin Duyuları, Haziran 2000, s.71
42 Paul Simons, "The Secret Feeling of Plant", New Scientist, vol 136 sayı 1843, 17 Ekim 1992, s. 29
http://www.rrz.uni-hamburg.de/biologie/b_online/e30/30b.htm
43 http://www.biology.leeds.ac.uk/centres/LIBA/cps/zhang.htm
44 http://www.esb.utexas.edu/roux/
45 http://www.rrz.uni-hamburg.de/biologie/b_online/e32/32d.htm
46 http://www3.telus.net/Chad/pulvinus.htm
47 "Sensitive Flower", New Scientist, 26 Eylül 1998, s.24
48 Dr. Sara Akdik, Botanik, Şirketi Mürettibiye Basımevi, İstanbul, 1961, s.13
49 http://waynesword.palomar.edu/ww0703.htm
50 New Scientist, "Pest leave lasting impression on plant", 4 Mart 1995, s.13
51 New Scientist, "Pest leave lasting impression on plant", 4 Mart 1995, s.13
52 Bilim ve Teknik, "Bitkilerin Duyuları", Haziran 2000, s.74-75
53 Malcolm Wilkins, Plantwatching, Facts on File Publications, 1988, s.75-77
54 Kingsley R. Stern, Introductory Plant Biology, Wm.C.Brown Publishers, USA, 1991, s. 189-190
55 http://gened.emc.maricopa.edu/bio/bio181/BIOBK/BioBookPLANTHORM.html
56 http://www.geocities.com/CapeCanaveral/Hall/1244/colaborationstropism.htm
57 Kingsley R. Stern, Introductory Plant Biology, Wm.C.Brown Publishers, USA, 1991, s.190
58 http://www.rrz.uni-hamburg.de/biologie/b_online/e32/32c.htm
59 http://waynesword.palomar.edu/carnivor.htm;
Wallace, Sanders , Ferl, Biology The Science of Life, Harper Collins, USA, 1996, sf. 640-641, 660
60 http://waynesword.palomar.edu/carnivor.htm
61 http://www.ultranet.com/~jkimball/BiologyPages/A/Auxin.html
62 http://gened.emc.maricopa.edu/bio/bio181/BIOBK/BioBookPLANTHORM.html; Malcolm Wilkins, Plantwatching, Facts on File Publications, 1988, s.167-169
63 Malcolm Wilkins, Plantwatching, Facts on File Publications, 1988, s.172-173
64 http://botany.about.com/science/botany/library/weekly/aa120797.htm
65 http://photoscience.la.asu.edu/photosyn/study.html
66 Sylvia S. Mader, Inquiry into Life, Wm. C. Brown Publishers,USA, 1991, s.726-727
67 http://gened.emc.maricopa.edu/Bio/BIO181/BIOBK/BioBookPS.html
68 Kingsley R. Stern, Introductory Plant Biology, Wm.C.Brown Publishers, USA, 1991, s.38
69 Kingsley R. Stern, Introductory Plant Biology, Wm.C.Brown Publishers, USA, 1991, s.38
70 Solomon-Berg- Martin-Villee, Biology, Harcourt Brace, USA,1993, s.190,
71 "From Photons to Chlorophyll", Some Observations Regarding Color in the Plant World, C.J. Horn, Botany Column-Kasım, 1997, http://photoscience.la.asu.edu/photosyn/education/photointro.html
72 http://www.life.uiuc.edu/govindjee/paper/gov.html#52
73 Kingsley R. Stern, Introductory Plant Biology, Wm.C.Brown Publishers, USA, 1991, s.167-168
74 "From Photons to Chlorophyll", Some Observations Regarding Color in the Plant World, C.J. Horn, Botany Column-Kasım, 1997
75 Malcolm Wilkins, Plantwatching, Facts on File Publications, 1988, s.154
76 Kingsley R. Stern, Introductory Plant Biology, Wm.C.Brown Publishers, USA, 1991, s.174,
http://aggie-horticulture.tamu.edu/greenhouse/ornamentals/light.html
77 http://aggie-horticulture.tamu.edu/greenhouse/ornamentals/light.html
78 "From Photons to Chlorophyll", Some Observations Regarding Color in the Plant World, C.J. Horn, Botany Column-Kasım, 1997
79 Guy Murchie, The Seven Mysteries Of Life, s. 52
80 Guy Murchie, The Seven Mysteries Of Life, s. 52
81 Guy Murchie, The Seven Mysteries Of Life, s. 52
82 http://plantcell.lu.se/LTM/01/default.html
83 http://botany.hawaii.edu/faculty/webb/BOTT311/PSyn/Psyn11.htm
84 Kingsley R. Stern, Introductory Plant Biology, Wm.C.Brown Publishers, USA, 1991, s.169-170
85 Ali Demirsoy, Kalıtım ve Evrim, Ankara, Meteksan Yayınları, s. 80
86 Kingsley R. Stern, Introductory Plant Biology, Wm.C.Brown Publishers, USA, 1991,sf.32
87 http://www.icr.org/pubs/imp/imp-266.htm
88 http://www.personal.psu.edu/ users/t/j/tjk153/diatoms.html;
http://www.icr.org/pubs/imp/imp-266.htm
89 tructure/leafcolor/xanthophylls.html,
http://www.icr.org/pubs/imp/imp-266.htm
90 Sidney Fox, Klaus Dose, Molecular Evolution and The Origin of Life, New York: Marcel Dekker, 1977, s. 2
91 Alexander I. Oparin, Origin of Life, (1936) New York, Dover Publications, 1953 (Reprint), s.196
92 New Evidence on Evolution of Early Atmosphere and Life, Bulletin of the American Meteorological Society, cilt 74, Kasım 1982, s. 1328-1330.
93 Stanley Miller, Molecular Evolution of Life: Current Status of the Prebiotic Synthesis of Small Molecules, 1986, s. 7
94 Jeffrey Bada, Earth, Şubat 1998, s. 40
95 Leslie E. Orgel, "The Origin of Life on Earth", Scientific American, cilt 271, Ekim 1994, s. 78
96 Charles Darwin, The Origin of Species: A Facsimile of the First Edition, Harvard University Press, 1964, s. 189
97 Charles Darwin, The Origin of Species: A Facsimile of the First Edition, Harvard University Press, 1964, s. 184.
98 B. G. Ranganathan, Origins?, Pennsylvania: The Banner Of Truth Trust, 1988.
99 Charles Darwin, The Origin of Species: A Facsimile of the First Edition, Harvard University Press, 1964, s. 179
100 Derek A. Ager, "The Nature of the Fossil Record", Proceedings of the British Geological Association, cilt 87, 1976, s. 133
101 Douglas J. Futuyma, Science on Trial, New York: Pantheon Books, 1983. s. 197
102 Solly Zuckerman, Beyond The Ivory Tower, New York: Toplinger Publications, 1970, s. 75-94; Charles E. Oxnard, "The Place of Australopithecines in Human Evolution: Grounds for Doubt", Nature, cilt 258, s. 389
103 J. Rennie, "Darwin's Current Bulldog: Ernst Mayr", Scientific American, Aralık 1992
104 Alan Walker, Science, cilt 207, 1980, s. 1103; A. J. Kelso, Physical Antropology, 1. baskı, New York: J. B. Lipincott Co., 1970, s. 221; M. D. Leakey, Olduvai Gorge, cilt 3, Cambridge: Cambridge University Press, 1971, s. 272
105 Time, Kasım 1996
106 S. J. Gould, Natural History, cilt 85, 1976, s. 30
107 Solly Zuckerman, Beyond The Ivory Tower, New York: Toplinger Publications, 1970, s. 19
108 Richard Lewontin, "The Demon-Haunted World", The New York Review of Books, 9 Ocak, 1997, s. 28