17 Ağustos 2010 Salı

Tohum Mucizesi

Tohum Mucizesi





EVRİM YALANINI ÇÖKERTEN GERÇEKLER DİZİSİ - 9 –







HARUN YAHYA








Birinci Baskı Temmuz 2000
ISBN 975-8432-29-[Evrimcilere "Net Cevap"]




VURAL YAYINCILIK




Çatalçeşme Sok. Üretmen Han
No: 27/13 Cağaloğlu-İstanbul
Tel: (0 212) 511 42 30




Baskı: SEÇİL OFSET
100, Yıl Mahallesi MAS-SİT Matbaacılar Sitesi
4. Cadde No: 77 Bağcılar-İstanbul Tel: (0 212) 629 06 15









İçindekiler



GİRİŞ

TOHUMDAKİ SIR

TOHUMLARIN YAPISI VE OLUŞUMU

TOHUMLARDAKİ TASARIM

TOHUMLARIN DAĞITILMASI

BİTKİLERİN VE TOHUMLARIN DAYANIKLILIĞI

ÖNEMLİ BİR AŞAMA: FİLİZLENME

TOHUM, BİR YARATILIŞ GERÇEĞİDİR

SONUÇ

EVRİM YANILGISI


Giriş


Biz gökten belli bir miktarda su indirdik ve onu yeryüzünde yerleştirdik; şüphesiz biz onu (kurutup) giderme gücüne de sahibiz.
Böylelikle, bununla size hurmalıklardan, üzümlüklerden bahçeler-bağlar geliştirdik, içlerinde çok sayıda yemişler vardır; sizler onlardan yemektesiniz.
Ve (daha çok) Tur-i Sina'da çıkan bir ağaç (türü de yarattık); o yağlı ve yiyenlere bir katık olarak bitmekte (ürün vermekte)dir. (Mü'minun Suresi, 18-20)


Bahçenizde bulunan meyve ağaçları, evinizin penceresinden görünen çam ormanı ya da arabayla giderken yol kenarında gördüğünüz çınarlar hakkında hiç detaylı olarak düşünmüş müydünüz? Bu bitkilerin nasıl ortaya çıktığını, hangi aşamalardan geçerek bir ağaç haline geldiklerini biliyor musunuz?Yoksa bitkilerin varlığı sizin için sadece estetik bir anlam mı ifade ediyor? Veya "olsalar da olur olmasalar da" diye mi düşünüyorsunuz? Eğer böyle düşünüyorsanız yanılıyorsunuz. Çünkü estetik zevkinize hitap etmelerinin yanısıra, nefes almanızı sağlayan atmosferdeki dengeleri, oksijen miktarının yeterliliğini, fazla karbondioksitten zehirlenmemenizi, atmosferdeki nemin rahatsız edici ölçülerde olmamasını, yaşadığınız yerdeki havanın çok soğuk ya da çok sıcak olmamasını yani şu anda pek çok yönden rahat bir yaşam sürmenizi büyük ölçüde bitkilerin varlığına borçlusunuz. Üstelik bitkilerin size olan faydası sadece bunlarla da sınırlı değil. Bütün canlılar gibi siz de yaşamak için ihtiyacınız olan vitaminlerin ve minerallerin çok büyük bir bölümünü bitkilerden karşılıyorsunuz.
Bitkilerin canlı yaşamında etkili olan genel özellikleri, nasıl fotosentez yaparak besin ürettikleri, topraktan aldıkları maddeleri nasıl dev gibi ağaçların en uç dallarına kadar dağıttıkları gibi mucizevi detaylar Evrim Yalanını Çökerten Gerçekler Dizisi'nin başka bir kitabı olan Bitkilerdeki Yaratılış Mucizesi adlı kitapta detaylı olarak ele alınmıştı. Bu kitapta ise bitkilerin başka bir yönünden, tohumlardan bahsedilecektir.
Tohum konusunun bu kitapta daha detaylı olarak incelenmesindeki amaç ise, insanlarda genel olarak var olan alışkanlık perdesini kaldırmaktır. Her insan tohumu tanır, neye benzediğini bilir, bitkilerin tohumlardan oluştuğundan haberdardır. Ancak nasıl olup da tahta parçasını andıran bir cisimden birbirine benzeyen ya da benzemeyen çeşit çeşit bitkinin çıktığını, bütün bu bitkilere ait bilgilerin tohumlara nasıl yerleştirildiğini, bu bilgilerin nasıl ayrı ayrı şifrelendirildiğini belki de hiç düşünmemiştir.
Nasıl olup da tahta görünümlü bir cisimden tam ayarında şekeriyle, özel kokusuyla, lezzetiyle meyveler çıkmaktadır? Ağacı üreten, meyveleri ağaca yerleştiren tohumun kendisi midir? Meyvelerin veya çiçeklerin şeklini, rengini belirleyen tohum mudur? Peki ya ağaç ile ilgili bilgileri eksiksiz olarak içindeki embriyoya yerleştiren tohumun kendisi midir?
Bu gibi sorular insanın aklına hiç gelmemiş olabilir. Ancak insan bu sorular üzerinde biraz düşününce, "Bir tohum ağaç üretmeyi nasıl bilir?" sorusunun cevabını da merak etmeye başlayacaktır. Tahta parçası görünümündeki bir cisim nasıl olur da ürettiği ağacın nasıl bir şekle ve yapıya sahip olması gerektiğini belirleyebilir? İşte özellikle bu son soru oldukça önemlidir. Çünkü tohumdan herhangi bir odun kütlesi çıkmaz. Örnek olarak binlerce farklı bitki türü içinden herhangi bir elma ağacını düşünelim. Elma ağacı, bilindiği gibi toprağa atılan bir tohumdan ortaya çıkar. Tohum, küçük bir cisimdir; ama nasıl olur bilinmez, o tohumun içinden belli bir süre sonra 4-5 metre uzunluğunda ve yüzlerce kilo ağırlığında dev bir ağaç oluşur. Ağaçtaki elmalar, cilalanmış gibi duran pürüzsüz kabukları, kendine özgü aroması, içlerindeki şekerli su ile kusursuzdurlar. Tohumun, kendisine oranla bu dev boyuttaki ağacı yaparken kullanabileceği tek malzeme ise ilk aşamada kendi içindeki yedek besin, sonrasında ise sadece toprak ve güneş ışığıdır.
Elma örneğinde de görüldüğü gibi tohumlar, içinde taşıma sistemi bulunan, topraktaki maddeleri özümsemek için gereken köklere sahip ve son derece iyi tasarlanmış canlı bir varlık üretmektedir. İnsan bile, akıl sahibi bir varlık olarak, iyi bir ağaç resmi çizmesi gerektiğinde dahi zorlanır; bir ağacın köklerindeki ve dallarındaki ayrıntıları çizmek ise çok daha zor bir iştir. Ama tohum, bu son derece kompleks canlıyı bütün sistemleriyle birlikte, canlı olarak üretmektedir.
Konuyu anlatabilmek için tohum "üretmektedir" diyoruz; ancak şunu hatırlatalım: Tohum, müstakil bir akla, şuura ve iradeye sahip bir varlık değildir. Bu durumda ağaçları ve bitkileri tüm çarpıcı sistemleriyle birlikte ortaya çıkaranın yani üretenin tohumun kendisi olduğunu iddia etmek mümkün değildir. Eğer böyle bir iddiada bulunan olursa, bu durumda tohumun son derece -hatta insandan bile- akıllı ve bilgili bir varlık olduğu sonucuna varması gerekir. Elbette bu, gerçekdışı bir iddia olur.
Bu konunun açıklaması ise -kitap boyunca da tüm delilleriyle göreceğimiz gibi- şudur: Tohumun içinde son derece üstün bir akıl ve kapsamlı bir bilgi gizlidir. Ancak bu akıl ve bilgi, elbette tohumun kendisine ait değildir. Tohumu meydana getiren maddelerin moleküllerinin, bu moleküllerin atomlarının akıl ve bilgi sahibi olduğu iddia edilemeyeceğine göre bu bilgi tohumun içine bir şekilde yerleştirilmiştir. Peki bu bilgiyi yerleştiren kimdir?
İşte insan bu şekilde birkaç aşamalı düşündüğünde çok önemli gerçeklere ulaşır. Tohum, kendi başına hiçbir şey yapması mümkün olmayan kuru, cansız bir cisimdir. Tohumlara bu bilgi çok üstün bir güç sahibi tarafından yerleştirilmiştir. Benzeri olmayan bu gücün sahibi Allah'tır. Tohumlar Allah tarafından ağaç yapabilecek bilgi ve sisteme sahip olarak yaratılmıştır. Toprağa atılan her tohum, Allah'ın ilmi ile kuşatılmıştır; O'nun ilmi ile büyüyüp gelişir ve bitki haline gelir:

Gaybın anahtarları O'nun katındadır, O'ndan başka hiç kimse gaybı bilmez. Karada ve denizde olanların tümünü O bilir, O, bilmeksizin bir yaprak dahi düşmez; yerin karanlıklarındaki bir tane, yaş ve kuru dışta olmamak üzere hepsi (ve herşey) apaçık bir kitaptadır. (En'am Suresi, 59)


1. BÖLÜM

TOHUMDAKİ SIR


Şimdi ekmekte olduğunuz (tohum)u gördünüz mü? Onu sizler mi bitiriyorsunuz, yoksa bitiren Biz miyiz? Eğer dilemiş olsaydık, gerçekten onu bir ot kırıntısı kılardık; böylelikle şaşar-kalırdınız. (Vakıa Suresi, 63-65)

Aşağıdaki resimlere bakın. Sizce kuru tahta parçalarını andıran bu cisimler nedir? Bu cisimlerden canlı bir varlık meydana gelebilir mi?
Bu cisimlere bakan birçok insan muhtemelen bunların meyve çekirdekleri veya çalı çırpı benzeri maddeler, hatta bir nevi çöp olduklarını düşünmüş olabilir. O halde siz, kimilerinin "çöp" olarak nitelendirdikleri bu cisimleri alıp bahçeniz veya evinizdeki bir saksının içindeki toprağa gömün ve bir müddet bekleyin. Bir süre sonra ne olacağını merak ediyorsanız arka sayfayı çevirin ve sonucu görün.
Arka sayfadaki resimlerden anlaşılacağı gibi bu "kuru tahta parçaları" birer tohumdur. Ve bu tohumlar uygun şartlar sağlandığında hayret verici şekilde yeşerir ve çeşit çeşit bitkileri meydana getirirler. Peki acaba küçük ve kuru olan bu cisimleri bir tahta parçasından ayıran özellik nedir?
Tohumların, kendilerini diğer cisimlerden ayıran çok önemli bir özellikleri vardır. Tohumlar ait oldukları bitkinin her dalına, her yaprağına, bu yaprakların sayısına, şekillerinin nasıl olacağına, kabuğunun ne renkte ve kalınlıkta olacağına, besin ve su taşıyan borularının genişliğine, sayısına, bitkinin uzunluğuna, meyve verip vermeyeceğine, verecekse bu meyvelerin tatlarına, kokularına, şekillerine, renklerine dair -kısacası bir bitkiyle ilgili olabilecek- bütün bilgilere sahip cisimlerdir.
Peki tohum hakkında hiçbir bilgiye sahip olmasaydık ve bu cismi ilk defa görüyor olsaydık, ne işe yaradığını da hiç bilmeseydik -arka sayfadaki resimlerde görüldüğü gibi- tohumların içinden hiçbiri diğerine benzemeyecek şekilde sayısız bitkinin çıkabileceğini, bu bitkilerin bir kısmının da metrelerce yüksekliğe ulaşabileceklerini tahmin edebilir miydik? Tabii ki böyle bir şeyi tahmin edemezdik. Kuru tahta parçası görünümündeki bir cisimden mis gibi kokan, çarpıcı renklere ve şekillere sahip sayısız çiçeğin; papatyaların, lalelerin, açelyaların, sardunyaların, nergislerin, güllerin, menekşelerin çıkacağını düşünemezdik. Türlü türlü meyvelerin; şeftalinin, hindistan cevizinin, armutların, ayvanın, dutun, kayısının yine bu tohumların oluşturduğu ağaçlarda yetişeceğini, küçük siyah, kahverengi ya da sarı cisimlerin böğürtlenleri, portakalları, mandalinaları, karpuzları, erikleri, biberleri, domatesleri oluşturacağını hayal bile edemezdik.
İşte bu yüzden tohum, üzerinde düşünülmesi gereken bir varlıktır. Milyonlarca yıldır tohumların içinde bitkilere ait bütün bilgilerin saklanıyor olması sıradan bir konu olarak karşılanmamalıdır. Bu, konu üzerinde düşünen insanın önünde hiç beklemediği ufukları açacak, pek çok olaya bakış açısını değiştirecek bir bilgidir. Bu bilgiye daha yakından şahit olmak için insanın en yakınından, örneğin evinde bulunan sebzelerden, çiçeklerden, meyvelerden düşünmeye başlaması yeterlidir.
Örneğin; bir tohumun karpuz olabilmesi için ne gibi bilgilere ihtiyaç vardır, düşünelim. Karpuz dilimini eline alıp inceleyen insan çok belirgin bir düzen ile karşılaşacaktır. Bu düzeni sağlayan bütün bilgiler karpuzun çekirdeklerinde yani tohumlarında mevcuttur. İncelemeye devam eden kişi karpuzun çekirdeklerinin her birinin ince bir bağ ile sulu bölüme tutturulduğunu görecek, çekirdeklerin üzerindeki incecik zarı fark edecektir. İşte bu zarın yapısı hakkındaki bilgi de, karpuzun hoşa giden tam ayarında şekeri, esansı ve lezzeti ile ilgili bilgi de tohumlarında mevcuttur. Bundan başka; karpuzun kabuğundaki desenler, kabuğun kalınlığı, üzerindeki mumlu yapı ile ilgili bütün bilgiler de tohumlarda şifrelenmiştir. Kabuğu oluşturan hücrelerin bir duvar ustasının yapamayacağı kadar pürüzsüz bir doku oluşturmalarını sağlayan bilgi de tohumlardadır.
Dünyanın her yerinde karpuzların aynı özelliklere sahip olmasını sağlayan da tohumda saklı olan bu bilgidir. Bu nedenle dünyanın neresine gidilirse gidilsin karpuz çekirdeklerinden bir miktar alınıp toprağa ekilse bir süre sonra topraktan bir karpuz bitkisinin çıktığı, ardından bu bitkinin üzerinde küçük karpuzların oluştuğu, bunların da zamanla büyüdüğü ve gerçek birer karpuza dönüştükleri görülecektir.
Başka bir örnek verelim ve kozalaklı bir ağacın özellikleri ile çöl bitkilerinin özelliklerinden bazılarını ele alarak karşılaştırma yapalım.

Kışın toprak donduğu için ağaç kökleri bir süre sonra topraktan su alamaz duruma gelir. Ayrıca kışın çok az yağmur yağar, yağışların çoğu kar olarak düşer. Bu nedenle ağaçların kış mevsiminde ortaya çıkan susuzluğa dayanıklı olmaları gerekmektedir. İşte ağaçlar bu dayanıklılığı yaprakları sayesinde kazanırlar. Örneğin; birçok kozalaklı ağacın yaprakları sert bir deri gibidir ve dökülmez. Yapraklarının üzerindeki mumlu yüzey de suyun buharlaşma yolu ile kaybını azaltır ve bu dayanıklılık yaprakların dökülmesini ya da su basıncı dolayısıyla bitkinin solmasını önler. Bundan başka kozalaklı ağaçların yapraklarının çoğu iğne şeklindedir ve dona karşı da dayanıklıdır.
Ayrıca bu bitkiler her bahar mevsiminde yeni yapraklar açtıklarında enerji toplarlar. Ve yapraklarının dayanıklılığı da bu bitkiler için önemlidir. Çünkü hava koşullarının elverişli olduğu her fırsatta bu bitkiler hemen fotosentez yaparak besin depolarlar. Yapraklarını dökmeyen ağaçların şekli de genelde koni biçimindedir ve bu sayede üzerlerine düşen kar kolaylıkla dökülür ve böylece dalları ağırlıktan kırılmamış olur. Ayrıca tutulan karlar ağacı soğuğa karşı korur ve yapraklardan nemin çıkmasını azaltarak su kaybını önler.1
Çölde yaşayan bir bitki için kuraklık en büyük tehlikelerden biridir. Ne zaman yağacağı belli olmayan yağmurlar, kum fırtınaları, aşırı sıcaklık gibi olumsuz etkenler normal şartlarda bitkilerin soylarının tükenmesine neden olabilir. Ancak çöl bitkilerine ya da kurak iklimlerde yetişen diğer bitkilere baktığımızda bu ortamlara dayanıklı olmalarını sağlayacak kendilerine has özelliklerinin bulunduğunu görürüz. Tohum yapıları, üreme şekilleri bu koşullarda nesillerini devam ettirmelerini sağlayacak şekildedir.

Buna çöl bitkilerinin tohumlarının içerdikleri bazı maddelerden örnekler verelim. Birçok çöl tohumu filizlenmeyi engelleyen çeşitli maddelere sahiptir. Örneğin; Sinapis alba adlı bitkinin meyveleri tohumun filizlenmesini engelleyen "blastokoline" maddesi ihtiva eder. Arizona'daki bazı çöl bitkileri de yine yapılarındaki bazı maddeler nedeniyle çok uzun uyku dönemlerinden sonra fidan verirler. Mesela; Lepidium lasiocarpum isimli bitki bir yıldan sonra, Streptanthus arizonicus 26 aydan sonra filizlenmeye hazırdır. Bu maddelerin varlığının önemi özellikle kurak mevsim baş gösterdiğinde anlaşılmaktadır.2
Bu iki bitki türünün örnek verilen özelliklerinin her biri tohumun embriyosunda bulunması gereken bir bilgi demektir. Yapraklarını dökmeyen bitkilerle çöl bitkileri arasındaki bu birkaç fark bile bitki tohumlarının içinde ne kadar çok ve detaylı bilginin kodlanmış olduğunu açıkça göstermektedir.
Gülün kırmızı rengi, yapraklarındaki kıvrımların her birinin nasıl olacağı, kaç yaprağının olacağı, yapraklarının yumuşaklığı, kadifemsi yapısı, güle kokusunu veren maddelerin oranı birer bilgidir. Patlıcana morumsu siyah rengini veren, üstüne cilalı kabuğunu yerleştiren, içinde çekirdeklerini sıralayan, sapını dayanıklı kılan, sapın içindeki taşıma borularının uzunluklarını belirleyen, embriyoya yerleştirilmiş olan bilgilerdir. Kuru sopaya benzeyen asma dallarından tatlı ve su dolu kesecikler halinde üzümlerin çıkmasını sağlayan da bu bilgidir. Üzüm kabuklarını fındık kabuklarından farklı kılan, bu iki meyvenin renklerini, tatlarını, kokularını, içindeki vitaminleri, birinin sulu birinin kuru yapılarda olmasını sağlayan hep tohumların embriyolarındaki bilgilerdir.

Bitkiler ilk ortaya çıktıklarından beri tohumla üreyen türlerin her birinde bu bilgiler var olmuştur. Buraya kadar anlatılanlarda da açıkça görüldüğü gibi aksi bir durum yani bu bilginin olmaması demek, o bitkinin var olmaması demektir. Bu noktada akla şu soru gelmektedir:
Tohuma bu bilgi kim tarafından yerleştirilmiştir?
Bu sorunun cevabını kitabın giriş bölümünde vermiştik. Ancak burada bir kez daha hatırlatmakta yarar vardır. Tüm bu muazzam bilgiyi tohumun içine yerleştiren, herşeyin yaratıcısı olan Allah'tır.
Küçücük bir tohumun içine böylesine muazzam bir bilginin yerleştirilmiş olması ve tohumların diğer özellikleri iman edenler için Allah'ın benzersiz yaratma sanatına birer örnektir. İmanlarını artıracak, onları Rablerine yaklaştıracak bir vesiledir. Allah herşeye güç yetiren olduğunu, binlerce sayfalık bilgileri küçücük tohumlara yerleştirerek ve eşi benzeri olmayan çeşit çeşit bitkiyi bu küçücük cisimlerden çıkararak bir kez daha bize göstermektedir. Tohumlardan bitkilerin çıkmasını sağlayan yalnızca Allah'tır. Bu gerçek ayetlerde şöyle bildirilmektedir:

Şimdi ekmekte olduğunuz (tohum)u gördünüz mü? Onu sizler mi bitiriyorsunuz, yoksa bitiren Biz miyiz? Eğer dilemiş olsaydık, gerçekten onu bir ot kırıntısı kılardık; böylelikle şaşar-kalırdınız. (Vakıa Suresi, 63-65)

Bir diğer ayette tohumu yaratanın da, toprağın içine düştüğünde onu yarıp içinden yeni bir bitkiyi çıkaranın da Allah olduğu şöyle haber verilmektedir:

Taneyi ve çekirdeği yaran şüphesiz Allah'tır. O, diriyi ölüden çıkarır, ölüyü de diriden çıkarır. İşte Allah budur. Öyleyse nasıl oluyor da çevriliyorsunuz? (En'am Suresi, 95)

Gerçek bu kadar açık olmasına rağmen bunu kavrayamayan insanlar yeryüzünde her zaman mevcut olmuştur. Allah'ın varlığını inkar eden kişiler bu yaratılış mucizesini görmezlikten gelerek tohumların ortaya çıkışına tesadüflerle açıklama getirmeye çalışmışlardır ve halen de çalışmaktadırlar. Ancak ne kadar çabalarlarsa çabalasınlar sonuç değişmeyecektir. Akıl ve vicdan sahibi her insan tohumdaki kusursuz tasarımı ve içerdiği olağanüstü bilgiyi inceledikçe bunun tesadüfen oluşamayacağını anlayacak ve yaratılış gerçeğine şahit olacaktır. Kitabın ilerleyen bölümlerinde de görüleceği gibi tohumlardaki tasarım ve içlerinde yer alan bilgi, kendi kendine ortaya çıkamayacak kadar ihtişamlıdır.


2. BÖLÜM

TOHUMLARIN YAPISI VE OLUŞUMU


Görmüyorlar mı; biz, suyu çorak toprağa sürüyoruz da onunla ekin bitiriyoruz; ondan hayvanları, kendileri yemektedir? Yine de görmüyorlar mı? (Secde Suresi, 27)

Başınızı çevirdiğinizde gördüğünüz metrelerce uzunluktaki ağaçlardan, mis gibi kokularından zevk aldığınız çiçeklere, yediğiniz sebzelere, meyvelere kadar pek çok bitki en başta birer tohumdular. Peki bu tohumlar hangi safhalardan geçerek oluşmuştur?
Tohum oluşumunun ilk safhası çiçekli bitkilerdeki polenlerin yani erkek hücrelerin taşınmasıdır. Rüzgar, böcekler, hayvanlar ya da başka herhangi bir yolla taşınan erkek üreme hücrelerinin (polenlerin) yolculuklarının son noktası çiçeklerin dişi üreme organlarıdır.
Çiçeklerin tam ortasında, meyve yapraklarından (karpellerden) oluşmuş tek ya da birkaç tane dişi organ bulunur. Her dişi organın en üst bölümünde de bir tepecik, bunun altında tepeciği taşıyan bir boyuncuk ve en dipte de tohum taslaklarını barındıran şişkince bir yumurtalık vardır.
Erkek organlardan gelen çiçek tozları, yüzeyi yapışkan bir sıvıyla kaplı olan tepeciğe konarlar, sonra boyuncuk kanalıyla dipteki yumurtalığa ulaşırlar. Bu yapışkan sıvının çok önemli bir görevi vardır: Çiçek tozları boyuncuğun altındaki yumurtalığa ulaşamadıkça buradaki tohum taslaklarını dölleyemezler. Bu yapışkan sıvı bu noktada devreye girer ve çiçek tozlarının etrafa dağılarak boş yere harcanmasını önler.
Çiçek tozları, tepeciğin üstüne konduktan sonra büyümeye başlar ve her çiçek tozu taneciği yani her erkek üreme hücresi, kök kadar ince bir borucuk geliştirerek, dişi organın boyuncuğundan yumurtalığa doğru uzatır. Bu borucuklardan her birinin içinde iki tane çekirdek vardır. Borucuk, uzayarak yumurtalığa ulaştığında kopar ve içindeki hücre çekirdekleri serbest kalır. Böylece çekirdeklerden biri yumurtalıktaki yumurta hücresiyle birleşir. Bu oluşum ileride tohumu meydana getirecektir. Diğer çekirdek de aynı tohum taslağındaki başka bir hücreyle birleşerek tohumun çimlenmesi için gerekli besin deposunu oluşturur. İşte bu olaya döllenme denir. Döllenmeden bir süre sonra da ortaya tohum çıkar.
Döllenmeden sonra oluşan her tohumda bir bitki embriyosu bir de besin deposu bulunur. Bitkiyle ilgili baştan beri anlattığımız bütün bilgiler bu embriyoda bulunur; yani embriyo bitkinin küçük bir kopyasını içinde barındırır. Besin deposu ise, bitki kendi besinini üretebilecek hale gelene kadar embriyonun büyümesini sağlayacaktır.


Tohumlardaki Yedek Besin Deposunun Özellikleri

Tohumlarda embriyo ile birlikte bulunan yedek besin çok önemlidir. Çünkü tohum halindeki bir bitkinin fotosentez yapacak yaprakları ve topraktan besin toplayabileceği kökleri yoktur. Toprağın üstüne çıkacak bir filiz haline gelene kadar tohum bünyesindeki bu besini kullanmak zorundadır. Bu nedenle yedek besin, tohumun gelişimini tamamlamasına yetecek miktarda olmalıdır.
Bu noktada karşımıza mucizevi bir detay çıkmaktadır. Her bitkinin tohumunda tam ihtiyacı olacak kadar besin depolanmıştır. Uzun süre çimlenmeden dayanması gereken tohumların (örneğin hindistan cevizi tohumları) içindeki besin miktarı ile suyla karşılaştıktan kısa bir süre sonra filizlenmeye başlayan tohumların (kavun, karpuz vs.) içindeki besin miktarı farklı farklı ayarlanmıştır. Üstelik döllenmeden sonra tohum oluşurken bitkinin türüne göre hangi maddelerin depolanacağı da ince ince tasarlanmıştır. Genel olarak nişasta ve protein, kimi zaman da bunlara ek olarak şeker ve yağ tohumda besin olarak depolanır. Bu maddelerden nişasta, vazgeçilmezdir çünkü tohum için gerekli olan ana enerjiyi sağlayacaktır. Depolanmış proteinler de bitki açısından önemli olan diğer proteinleri inşa etmek için embriyonun ihtiyaç duyacağı aminoasitleri meydana getirecektir.3
Şimdi burada durup düşünelim. Bu besin miktarını ve cinsini ayarlayan kimdir? Bunu ayarlayan tohum olamaz çünkü ortada henüz bir tohum yoktur, bu ayarlama tohumun oluşumundan önce yapılmaktadır. O halde bitkinin kendisi, tohumunun hangi aşamalardan geçerek, ne kadar süre sonra döllenebileceğini tespit edip, kendisi mi bu miktarı ayarlamaktadır? Böyle bir ihtimali kabul etmek, bitkinin kendi aklı ve şuuru olduğunu, ileri görüşlü olduğunu, kendi dışında gelişen olaylardan haberdar olduğunu ve daha inanılması mümkün olmayan pek çok mantık dışı olayı kabul etmek demektir. Elbette bunu kabul etmek akıl ve mantık sahibi bir insan için mümkün değildir.
Bu durumda karşımıza çıkan gerçek açıktır: Her bitkinin tohumunun içine tam gerektiği kadar besini depolayan, tüm bitkilerin ve o bitkilerin döllenme aşamalarının, sistemlerinin yaratıcısı olan Allah'tır.


Tohumlardaki Besin Maddelerinin Önemi

Döllenmeden sonra tohum oluşurken bitkinin türüne göre nişasta ve protein ile birlikte şeker ve yağ da tohumda besin olarak depolanır. Nişasta tohum için gerekli olan ana enerji kaynağını sağlar. Depolanmış proteinler de bitki açısından önemli olan diğer proteinleri inşa etmek için embriyonun ihtiyaç duyacağı aminoasitleri sağlayacaktır. Fakat embriyonun proteinleri ve nişastayı emerek, onları kendi içinde taşıyabilecek hale gelmesi için bu protein ve nişastaların suda çözünür olması gerekmektedir. Nitekim tohumda depolanan maddelere baktığımızda protein ve nişastaların tam da bu özelliklere sahip olduklarını görürüz.4
Tohumun gelişimini sürdürebilmesi ve bir bitki haline gelebilmesi için mutlaka gerekli olan besin deposunun varlığı sadece bitkiler için önemli değildir. Tohumlardaki bu besleyici maddeler hem insanlar hem de hayvanlar için önem taşımaktadır. Örneğin; buğday, mısır, pirinç, arpa, çavdar, yulaf, darı, kara buğday, baklagiller (bezelye, fasulye, soya fasulyesi, börülce, yer fıstığı) ve kabuklu yemişler (Brezilya fıstıkları, hindistan cevizi, ceviz, badem gibi) besleyici maddeleri içinde bulunduran tohumlardandır.

Genellikle tohumlarda, diğer maddelere oranla şekere daha az rastlanır. Tatlı mısır, kestane, badem, fıstık ve bezelye gibi tohumlar ise diğerlerine oranla çok daha fazla miktarda şeker depolayan tohumlardandır.
Yağ depolayan tohumlardaki yağ, tohumlar olgunlaştıkça hızlı bir şekilde artar. Tohumlardan elde edilen en önemli yağların bazıları keten, pamuk, soya fasulyesi, zeytin, yer fıstığı, keneotu tohumu, hindistan cevizi, susam ve hurma bitkilerinden elde edilmektedir. Bu yağlar besin olarak kullanılmalarının yanısıra boya, cila, muşamba, mürekkep, sabun ve yalıtım maddelerinin yapımında da kullanılmaktadır.5
Bu örneklerden anlaşılacağı üzere, insanın yaşamı ve sağlığı doğrudan doğruya ya da dolaylı olarak tohumlara bağlıdır. Lifli besin, baharat gibi besin ihtiyaçları, içecekler, yenilebilen ve endüstriyel olmak üzere kullanılan yağlar, vitaminler ve ilaçlar insanın tohumlardan yararlandığı alanlardan birkaçıdır.


Tohumlardaki Mineral ve Vitaminler

Kuru tohumların pek çoğunun besin değeri son derece yüksektir. Bunlardan kabak çekirdeği, susam ve ayçiçeği tohumları, tahıl tanelerine oranla daha fazla protein içeren besinlerdir. Örneğin kabak çekirdeği tohumları % 30'dan daha fazla protein içerirler. E vitamini açısından yüksek olan bu tohumlar aynı zamanda ağırlıklarının yarısından daha fazla yağ içermektedirler. Bunun çoğu (% 80'den daha fazlası) damar sertliğine karşı koruyucu türde olan yağlar, bizim asıl yağlı asitlerimiz ve yağda çözünen vitaminlerden A, D ve E vitaminleridir. Tohumlarda B vitamini de bulunmaktadır fakat tohumun türüne bağlı olarak bu miktar değişmektedir.6
Bundan başka tohumlar mineral açısından da son derece zengindirler. Örneğin; bol miktarda demir ve çinko bulundururlar. Özellikle balkabağı tohumlarında magnezyum miktarı da fazladır. Aynı zamanda birçok tohum, bakır deposudur. Tohumlardaki kalsiyum ve potasyum ve fosfor seviyesi de oldukça yüksektir, çok az miktarda sodyum içermektedirler. Çoğu tohumda iyot da bulunmaktadır.
Balkabağı tohumları (çekirdekleri) konsantre çinko taşır. Bu özellikleri sayesinde çeşitli hastalıkların tedavisinde kullanılırlar. Bundan başka balkabağı tohumları kalsiyum ve fosfor gibi demir açısından da oldukça zengindirler. Aynı zamanda E vitamini ve temel yağlı asitleri içermektedir. Tohumlarında B vitaminerinin karışımı bulunmaktadır bunların arasında niasin en zengin olanıdır.

Susam tohumları dünyada en çok kullanılan tohumlardır. Bu tohumlar yağ açısından zengindirler (yağ oranı % 55'in üzerindedir). Susam tohumları yaklaşık olarak % 20 protein, bazı A ve E vitaminlerini, B12 ve folik asit dışındaki B vitaminlerinin çoğunu içermektedirler. Çoğu tohumda olduğu gibi mineraller de susam tohumlarında bolca miktarda bulunmaktadır. Kalsiyum, bakır, magnezyum, fosfor ve potasyum gibi çinko ve demir de yüksek miktarlardadır. Susam tohumları mükemmel bir kalsiyum kaynağıdır. Bununla birlikte çoğu tohumda olduğu gibi fosfor da oldukça yüksektir. Susam tohumları aynı zamanda içeriklerindeki E vitamini ya da diğer faktörlerden dolayı hafif bir antioksidan etkisine sahiptirler.7

Çiğ ayçiçeği tohumları kızartılmış olanlarına ve tuzlu cinslerine göre besleyicilik açısından zengindirler. Kan basıncı problemi olanlar için ayçiçeği tohumları potasyum açısından zengin, sodyum açısından fakirdir. Ayçiçeği tohumlarındaki yüksek miktardaki yağ (-damar sertliğine karşı koruyucu nitelikte olan yağlar gibi-) temel linoleic asit ve E vitamini kolesterol düzeyini indirmek ve kardiyovasküler hastalıkları önlemede oldukça etkilidir. Ayçiçeği tohumları yaklaşık olarak % 25 proteinden oluşmaktadırlar, liflidirler, B vitamini açısından zengindirler. Yüksek oranda potasyum, düşük oranda sodyum ve farklı oranlarda çinko, demir ve kalsiyum içermektedirler. Ayçiçeği tohumları mineral açısından zengin besin kaynaklarıdır. Bakır, manganez ve fosfor seviyeleri de oldukça yüksektir, ayrıca magnezyum bulunmaktadır.8
Yukarıda yer verdiğimiz bu birkaç örnekte de görüldüğü gibi Allah tohumları vesile kılarak insanları pek çok yönden rızıklandırmaktadır. Bu yönüyle tohum sadece bitkilerin yetişmesine vesile olması ile değil, şükredilmesi gereken nimetlerden biri olarak da karşımıza çıkmaktadır.

Öyleyse Allah'ın sizi rızıklandırdığı şeylerden helal (ve) temiz olanlarını yiyin; eğer O'na kulluk ediyorsanız Allah'ın nimetine şükredin. (Nahl Suresi, 114)


3. BÖLÜM

TOHUMLARDAKİ TASARIM


O, gökleri dayanak olmaksızın yaratmıştır, bunu görmektesiniz. Arzda da, sizi sarsıntıya uğratır diye sarsılmaz dağlar bıraktı ve orada her canlıdan türetip yayıverdi. Biz gökten su indirdik, böylelikle orada her güzel olan çiftten bir bitki bitirdik. (Lokman Suresi, 10)

Tohumlar temel yapı olarak -önceki bölümde de söz ettiğimiz gibi- bir tohum kılıfı, besin deposu ve embriyodan oluşurlar. Ancak temel yapıları aynı olmasına rağmen her tohumun besin deposunun miktarı, tohumu çevreleyen koruyucu zarın cinsi, kalınlığı, kendisini saran meyvenin şekli, meyvesinin tadı birbirinden çok farklıdır. Tohum kılıflarının şekillerinden renklerine, malzemelerindeki çeşitliliğe kadar herşey, bitkilerin yaşadığı ortama ve türüne göre değişiklik gösterir.
Bu açıdan incelendiğinde tüm tohumlar bir tasarım harikası olarak karşımıza çıkarlar. Şimdi bu tasarım farklılıklarını örnekler vererek görelim. Kayısıda tek bir çekirdek yani bir tane tohum bulunur ve bu çekirdek katı kabuğunun içinde çok iyi korunur. Etli kısım ise şekerli ve yenilmeye elverişlidir. Bu bölüm insanların yanısıra kuşlar, kemirgenler, böcekler ve diğer hayvanlar için de iyi bir besindir. Ancak meyvenin böyle iki kısımdan oluşması, bitki için de iyi bir fırsattır. Çünkü meyve bölümünün yenilmesi ile birlikte kayısının ortasında sert bir çekirdek şeklinde tohum ortaya çıkar. Ve tohum bu şekilde uygun bir yerde filizlenerek yeni bir ağaç olarak yetişme imkanı bulur.
Başka bir örnek olarak kiviyi verelim. Kivi, kayısının aksine içindeki çekirdekleri (tohumları) de yenen bir meyvedir. İşte bunun için kivinin tek bir tohumu değil, çok sayıda küçük tohumu vardır. Etli bir meyve olan kivide olduğu gibi gruplaşmış halde bulunan tohumlar genellikle küçüktür ama birarada bulunmaları ve çok sayıda olmaları nedeniyle -meyvenin bir bölümü yense bile- bir bitki haline gelme ihtimalleri daha fazladır.
Kuru meyveler ise genellikle tohumun korunmasında ve yayılmasında önemli bir fonksiyona sahip olan mimari yapılarla süslüdür. Buna örnek olarak devedikeninin tepesinde bulunan püskülü verebiliriz. Bu küçük paraşütlerin görevleri -ileriki bölümlerde detaylarıyla inceleyeceğimiz gibi- değerli yüklerini (üreme hücrelerini) hava yoluyla uzaklara taşımaktır.
Kuru meyvelerden çok tohumlu olanlar tohumlarını yaymak için açılırlar. Yeşerme sırasında tohumlar birbirlerine yaklaşarak sıkışır ve iyice sıkıştıracak şekilde karşılıklı birbirlerini zorlarlar. Bu tür meyvelere kendiliğinden açılan meyveler denilir. Bunlarda, tohumun kılıfı kalın ve dayanıklıdır, çünkü embriyoyu ve besin deposunu bu kılıf korumaktadır. Bu türün tohumları çok farklı renkler, şekiller ve dokulara sahip olduğu gibi, kanatlar, tüyler, ince zar gibi farklı bölümlere de sahiptir.
Çok tohumlu kuru meyvaların tipleri büyük bir çeşitliliğe sahiptir. Kapsüller, kesecikler, keçiboynuzu, taneli vs. gibi pek çok meyva tasarımı söz konusudur. İşte bunlara birkaç örnek:
Montbretia'nın üç tohum kaplı kapsülü parlak oranj renkte yuvarlak tohumlara sahiptir. Tohumlarını etrafa saçmak için rüzgarın onu sallamasını veya herhangi bir canlının oradan geçmesini bekler.9
Baklagiller ise meyvaları taneli olan son derece geniş bir türdür. Her türün şekli ve özellikleri kendine özgüdür. Örneğin; bezelyenin taneleri son derece düzgün bir şekilde arka arkaya dizilmişlerdir. Colutea arborescens ise içi hava ile şişmiş bir haldedir ve gürültülü bir şekilde çatlar. Bu bitkilerin en ilginci de mimoza bitkisinin (Mimosa pigra) inanılmaz taneleridir. Bunlar, her biri bir tohum içerecek şekilde tüylü dikenlere benzer şekiller oluşturmuşlardır.10
Bunlar bitki tohumlarındaki fonksiyonel tasarımlarla ilgili yalnızca birkaç örnektir. Her bitki türünün tohum yapısının farklı olduğu düşünüldüğünde benzersiz bir çeşitlilik ve bu çeşitlilikteki kusursuzluk ile karşı karşıya olduğumuz görülecektir.


Tohum Kılıflarındaki Özel Maddeler

Tohumların genel tasarımlarındaki farklılıkların yanısıra, kılıfları da tam ihtiyaç duyacakları özelliklere sahip olarak yaratılmıştır.
Tohumun içindeki embriyo son derece değerlidir. Bu nedenle yeni bitki tam olarak gelişene kadar bu embriyonun özenle korunması gerekir. Bu koruma her bitki türüne göre değişiklik gösteren tohum kılıfları ile sağlanmıştır. Tohum kılıfını oluşturan maddenin dayanıklılığı oranında tohum dış ortamın olumsuz etkilerinden korunur. Bundan başka kılıfı oluşturan maddeler, tohumların su üzerinde durabilmesinde ya da rüzgarlarla uçmasında da etkendirler.
Tohumların dış kılıfları, son derece çeşitli ve dikkat çekici özelliklere sahiptir. Bazı dış zarlar düşmanları uzaklaştırabilmek için acı bir madde ile kaplıdır. Bazıları ise "tanen" denilen bir madde bakımından zengindir ki bu madde tohumlardaki çürümeyi sınırlandırır. Birçok bitki türünün tohumlarında ise kılıflar bir tür jöle ile kaplıdır. Proteinlerle birleşmiş kompleks şekerlerden oluşan bu jölemsi madde, su ile karşılaştığında kolayca şişer. Bu sayede tohum kolayca nemli maddelerin üzerine yapışır. Bu özellik, ileride göreceğimiz gibi filizlenme sırasında önemli rol oynayacaktır.11
Tohumların koruyucu dış katmanları (tohum kılıfları) genellikle çok serttir. Bu özellik tohumu karşılaşacağı dış etkenlere karşı korur. Örneğin; bazı tohumların gelişimlerinin son aşamasında dış yüzeylerinde dayanıklı mumlu bir yapı birikir, bu sayede tohumlar su ve gaz tesirine karşı dirençli olurlar. Tohum kılıfları bitkinin türüne göre değişik malzemelerle kaplanabilir; fasulye tanesinde olduğu gibi ince bir zarla ya da kiraz çekirdeğinde olduğu gibi odunsu ve sert bir kabukla örtülü olabilir. Suya dayanıklı olması gereken tohumların kabukları diğerlerine göre daha sert ve kalındır.12
Tohumlardaki tasarıma günlük hayatımızda sık karşılaştığımız bir bitkiden, fasulye tanesinden örnek verelim:
Fasulye tanesi, türüne göre bir veya iki kılıf ile çevrilmiştir. Bu kılıflar tıpkı bir palto gibi tohumu dış ortamın soğuk hava, kuraklık, mekanik etkiler gibi zorlu şartlarından korur. Burası, aynı zamanda dış ortam ile olan bütün alışverişin de yapıldığı bölgedir. Kısacası, tohumun büyümesi konusunda bu kılıf önemli bir rol oynamaktadır.
Fasulye tanesinin bulunduğu yerden koparıldığı noktada oval bir iz görülür. Bu, tanenin yani tohumun anne bitkiye olan bağlantı noktasıdır. Dikkatli bir şekilde incelendiğinde burada "micropyle" denen küçük bir delik olduğu görülecektir. Bu deliği işlevleri nedeniyle bebeklerdeki göbek bağına benzetmek mümkündür. Bu özel geçiş yerinden yumurtacığın içerisindeki dişi üreme hücresini döllemeye yarayan tüp girer. Ayrıca zamanı geldiğinde su, bu delikten içeriye girerek ve tohumun filizlenmesini sağlar.13
Tohum kabuklarının kalınlığı da -daha önce belirttiğimiz gibi- bitkinin türüne göre özel olarak ayarlanmıştır. Her bitkinin tohum kabuğu bulunduğu ortamda gelişmesine olanak verecek yeterliliktedir; ne çok kalındır ne de çok ince. Çünkü kabuğu çok kalın olan bir tohum bütün zorlu koşullarda yaşayabilir; ancak bir dezavantaj olarak aşırı kalın bir kabuk embriyonun dışarı çıkmasında bazı problemlere neden olabilir. Zayıf kabuğu olan bir tohum ise pek çok dış etken nedeniyle daha çabuk bozulabilir. İşte bu yüzden tüm tohumlar bulundukları ortama en uygun kabuk kalınlıklarına sahiplerdir.
Ayrıca bitki tohumlarının tasarımlarını incelediğimizde şöyle bir detayla daha karşılaşırız. Tohumların kabukları, hayvanlarla taşınan tohumlarda dağıtımlarını yapacak olan hayvanların ilgi duyacağı kadar kolay delinebilme özelliğine sahiptirler. Ancak aynı zamanda bu kabuklar, kapladıkları tohumları bütün tohum yiyiciler için cazip hale getirmeyecek bir yapıdadırlar.14
Buraya kadar anlatılanlardan da açıkça görüldüğü gibi basit bir dış görünüme sahip olan tohumların aslında detaylı bir tasarımı vardır. İçlerindeki maddelerin oranlarından içeriklerine ve koruyucu üst kaplamalarına kadar tüm tohumların özellikleri bulundukları iklim koşullarına, çevre şartlarına göre değişiklik göstermektedir. Peki bu çeşitlilik ve detaylar nasıl ortaya çıkmıştır?
Bu sorunun cevabı ile ilgili olarak evrim teorisini savunan kitaplara baktığımızda ilginç bir durumla karşılaşırız. Evrimciler "Neden?", "Nasıl?" gibi sorulara cevap vermektense üstü kapalı ifadeler, göz boyama yöntemleri kullanmayı tercih ederler. Bu konuyla ilgili olarak tohumların üst kaplamaları hakkında Evolution isimli evrimci bir kitapta yazılanları ele alalım.
Tohumun üst kaplaması çeşitli hayvanların azı dişlerine, bağırsak asitlerine ve enzimlere, oksijensiz atmosfere direnecek kadar dayanıklıdır. Ayrıca bu tohum kaplaması gerektiğinde uygun filizlenme koşulları oluşana kadar embriyoyu havadan, yanlış filizlenmesine neden olacak sebeplerden ve tohum yiyen hayvanlardan korumak için evrimsel olarak dizayn edilmiştir.15
Dikkat edilirse yukarıda tohumların kusursuz tasarımındaki dikkat çekici özelliklerden bazıları arka arkaya sıralanmakta, son satırlarda ise "evrimsel dizayn" ifadesi kullanılarak tohumların evrim ile oluştuğu havası yaratılmaya çalışılmaktadır. Ancak takdir edileceği gibi yukarıdaki paragraf tohumların nasıl ortaya çıktıkları sorusunu açıklamaktan son derece uzaktır. Çünkü burada sadece tohumlardaki tasarımın kusursuzluğundan bahsedilmektedir. Sona eklenen "evrimsel olarak dizayn edilmiştir" cümlesi ise gerçekte hiçbir anlam ifade etmemektedir.
Ayrıca bu ifade kendi içinde de tutarsızdır. Zira, "evrim" ve "dizayn" kavramları birbirine taban tabana zıt kavramlardır ve evrimin bir dizayn ortaya çıkarması, bir şey tasarlaması düşünülemez. Çünkü evrim tesadüflere dayalı bir süreci savunur; "dizayn" yani "tasarım" kavramı ise bilinçli bir aklın varlığını gösterir. Dolayısıyla bir yerde bir dizayn varsa bu durum evrim, tesadüf, rastlantı gibi kavramların bunda hiçbir etkisi olamayacağını ortaya koyar. Canlılardaki ve şu anki konumuz olan tohumlardaki dizayn da onların evrimin değil bilinçli bir aklın ürünü olduklarının en açık kanıtıdır.
Bu durumu şöyle bir örnekle daha açık hale getirelim. Bir gün bir resim galerisine gittiğinizi ve burada bir salon dolusu tohum resmi ile karşılaştığınızı farz edelim. Her resimde farklı bir bitkinin tohumu ile ilgili detaylar çizilmiş olsun. Galerinin sahibine bu kadar çeşitli resmi kimin çizdiğini sorduğunuzu düşünelim. Eğer bu kişi size "bu resimlerin bir ressamı yoktur, bunlar tesadüflerin yardımıyla evrimsel olarak dizayn edilmiştir" dese ne düşünürsünüz? Elbette böyle bir cevabın son derece mantıksız ve akıl dışı olduğunu hemen anlar ve ressamın varlığı konusunda ısrar edersiniz.
Cansız tohum resimlerinin "evrimsel dizaynına" inanamayacağınıza göre, tamamen canlı yapılarda, içinde bir bitkiye ait tüm bilgileri bulunduran, uygun şart ve ortamlarda filizlenerek dev ağaçları, yüz binlerce çeşit meyveyi, çiçeği meydana getiren tohumları, bilinçsiz ve şuursuz tesadüflerin var ettiğine de inanamazsınız. Görüldüğü gibi burada asıl olarak bu dizaynı kimin yaptığı, nasıl yaptığı, bitkinin bu dizayna uygun bir yapıya nasıl getirildiği ve bunun nasıl yerleştirildiği gibi soruların cevabının verilmesi gerekmektedir.
Sonuç olarak, tohumların yapısında evrimcilerin tesadüf iddiaları ile asla açıklanamayacak, çok açık bir tasarım ve plan vardır. Elbette ki bu plan şuursuz tesadüflerin sonucunda ya da başka herhangi bir nedenle ortaya çıkmamıştır. Her resmin bir ressamı olduğu gibi her tasarımı her planı yapan da biri vardır. Tohumlardaki kusursuz tasarım ise sonsuz akıl ve üstün güç sahibi olan Allah'a aittir. Bitkilerin yaşamının her kademesinde görülen bu akıl, onların üstün güç sahibi olan Allah tarafından yaratılmış olduklarının açık bir delilidir.

Sizin için gökten su indiren O'dur; içecek ondan, ağaç ondandır (ki) hayvanlarınızı onda otlatmaktasınız. Onunla sizin için ekin, zeytin, hurmalıklar, üzümler ve meyvelerin her türlüsünden bitirir. Şüphesiz bunda, düşünebilen bir topluluk için ayetler vardır. (Nahl Suresi, 10-11)

4. BÖLÜM

TOHUMLARIN DAĞITILMASI


Şüphesiz, göklerin ve yerin yaratılmasında, gece ile gündüzün ard arda gelişinde, insanlara yararlı şeyler ile denizde yüzen gemilerde, Allah'ın yağdırdığı ve kendisiyle yeryüzünü ölümünden sonra dirilttiği suda, her canlıyı orada üretip-yaymasında, rüzgarları estirmesinde, gökle yer arasında boyun eğdirilmiş bulutları evirip çevirmesinde düşünen bir topluluk için gerçekten ayetler vardır. (Bakara Suresi, 164)

Bitkiler gibi hareketsiz, yerlerinde sabit duran canlıların, tohumlarını diğer bitkilere nasıl ulaştırdıklarını, tohum dağıtma işleminin nasıl gerçekleştiğini belki bugüne kadar hiç düşünmemiş olabilirsiniz. Oysa tohumlu bitkiler ilk var oldukları dönemden itibaren hiçbir yardıma, hiçbir müdahaleye ihtiyaç duymadan tohumlarını çeşitli şekillerde dağıtma imkanına sahiptirler.
Dağıtım işleminin aşamalarını genel olarak şöyle özetleyebiliriz: Döllenen çiçeklerden tohumlar oluşur. Bunlar kimi bitkilerde yere düşer, kiminde rüzgarla havalanır, kiminde de hayvanlara takılır ve bu şekilde çevreye dağılır. Ancak bu özet, bitki tohumlarının dağıtım sisteminin oldukça yüzeysel bir tanımlamasıdır. Çünkü bu dağıtım işlemi detaylarına inilerek incelendiğinde, bitkilerin ve hayvanların yaşamlarıyla direkt bağlantılı pek çok ilginç olayın gerçekleştiği görülecektir.
Öncelikle her bitkinin oluşturduğu tohum -önceki bölümde gördüğümüz gibi- farklı bir şekle sahiptir. Bir tohumun ya da meyvenin şekline bakarak nasıl yolculuk yaptığını yani nasıl dağıtıldığını tahmin etmek mümkündür. Örneğin; bazı ağaçların etli, yumuşak, cezbedici koku ve renklerde meyveleri vardır. Sindirime dayanıklı kalın kılıflı tohumları olan bu ağaçlar, bu cezbedici özellikleriyle kuşları ve diğer hayvanları kendilerine çekerler. Bazı tohumlarınsa iğneleri, çengelleri hatta olta ve dikenleri vardır. Bu tohumlar kürklü hayvanlara takılarak taşınırlar. Bazı tohumlar rüzgarda kümeler halinde, tüy ya da tüycükler şeklinde seyahat ederler. Diğerleri kanatlara sahiptir ya da küçük balonlara benzer şekilde şiştirler ve bu sayede uçabilirler. Havada yolculuk yapan tohumların yeterince hafif olmaları, ayrıca şekillerinin de havada uçmaya uygun bir tasarımda olması gerekmektedir. Bazı bitkiler ise üremek için sadece tohumlarını toprağa düşürürler. Bazıları da tohumlarını kendi kendilerine fırlatarak dağıtırlar. Bu fırlatma, tohum kabı içinde büyüme sırasında oluşan gerilimin bir şekilde boşalmasıyla sağlanır. Bazı bitkilerde ise tohum kabukları güneşte kuruduktan sonra çatlayarak açılır ve toprak yüzeyine düşer.

Buraya kadar genel hatlarıyla verilen örneklerde, tohumların yayılmasında çok detaylı bir sistemin tasarlanmış olduğu hemen görülmektedir.
Tohumların dağıtılmasında asıl olarak dikkati çeken nokta çok farklı parçalara ve dağıtım şekillerine sahip olmasına rağmen sistemin kusursuz şekilde işlemesidir. Hayvanların taşıdığı tohumlar hep böyle taşınır ve bu sistemde bir aksama meydana gelmez. Rüzgarla uçanlar uygun şekilleri sayesinde hep uçarak hareket ederler.
Burada en çok dikkat çeken nokta ise, ilerleyen bölümlerde verilecek örneklerde de görüleceği gibi hem hayvanların hem de bitkilerin bu işlemler sırasında son derece şuurlu bir şekilde hareket etmeleridir. Peki bu şuurun ve planın kaynağı nedir? Elbette ki bir çiçeğin ya da ağacın, bir kuşla ya da sincapla biraraya gelerek bir dağıtım sistemi kurmaya karar vermesi, bu canlıların neler yapacaklarını ve sistemin nasıl işleyeceğini ortaklaşa tasarlamaları mümkün değildir. Bitkilerin kendileri de üremek için plan hazırlayıp bu plana göre bir sistem kurmuş olamazlar. Ama vakti geldiğinde her bitki üreme işlemlerini başlatır, tohumunu oluşturur ve onu gerektiği gibi dağıtır. Diğer bitkiler de aynı şekilde, aynı sırayla aynı sistemi kullanarak hareket ederler. Bu, dünyanın her yerindeki aynı tür bitkiler için değişmeden devam eder.


Balistik Bilgisine Sahip Tohumlar

Bazı bitkilerin tohumlarının yayılması için çok güçlü olmayan etkiler bile yeterli olmaktadır. Bir yağmur damlası üzerine düştüğünde ya da herhangi başka bir kuvvet ile karşılaştığında tohumlarını havaya fırlatan çiçekler vardır. Örneğin Akşam çuha çiçeği tohumlarını kuruyken kapalı olan kapsüllerde saklar. Islanınca bu kapsüller hemen açılır ve bir kupa şeklini alır. Bu durumdayken tohumların dağılması için yağmur damlaları yeterli olacaktır. Kına çiçeği ise bütün yol kenarlarında görülebilen sarı, portakal rengi ve kahverengi benekli çiçekleri olan bir bitkidir. Dokunulduğunda bir silahın ateşlenmesine benzer bir şekilde tohumlarını etrafa fırlatır.
Ancak burada çok ilginç bir nokta söz konusudur. Bilindiği gibi, bitkiler durağan varlıklardır yani hareket edemezler. Fırlatma gibi bir eylemin yapılabilmesi içinse mutlaka bir enerjinin var olması gerekmektedir. Bu enerji, içerisinde tohumların bulunduğu meyve yaprağındaki değişimler sonucunda ortaya çıkar. Kapalı bir tohum düşünün. Bu tohumun meyve yaprakları güneşte kuruduğunda büzüşür. Bu enerji yaratan bir değişimdir. Aynı şekilde tohum yağmurda ıslandığında şişen meyve yapraklarının dokularında gerçekleşen değişim fırlatma mekanizması için bir enerji kaynağı oluşturur.18
Bitkilerdeki bu gibi dağıtım işlemlerinde son derece hassas dengeler üzerine kurulu mekanizmalar vardır. Bitkinin harekete geçerek tohumlarını yaymaya başlamasındaki zamanlama da çok önemlidir. Bu konunun önemini Akdeniz salatalığının tohumlarını nasıl yaydığını detaylandırarak görelim.


Akdeniz Salatalıklarındaki Roket Sistemi

Akdeniz salatalığı benzeri bitkiler, tohumlarının yayılması için kendi güçlerini kullanırlar. Olgunlaşmaya başlamasıyla birlikte Akdeniz salatalıklarının içleri yapışkan bir sıvıyla dolmaya başlar. Sıvıdan kaynaklanan basınç gittikçe artar ve sonunda basınca dayanamayan tohumlar patlar. Tohum patlarken, havaya fırlatılan roketin arkasında bıraktığı ize benzer bir şekilde içindeki sıvıyı da dışarıya fışkırtır. Bu sayede sıvıyla birlikte salatalığın tohumları da toprağa dağılmış olur.19
İlk bakışta sadece bir bitkinin olgunlaştığı için patlaması olarak düşünülecek bu işlemdeki mekanizma aslında çok hassastır. Öncelikle kapsüle sıvının dolmaya başlamasıyla salatalığın ve tohumlarının olgunlaşmaya başladığı dönemin aynı zamana denk gelmesi gerekmektedir. Çünkü sistem daha önce çalışmaya başlasa, tohumlar olgunlaşmadan patlayan kapsül hiçbir işe yaramayacaktır. Bu da bitkinin üreyememesine yani bu türün yok olmasına neden olacaktır. Fakat bitkide yaratılmış olan mükemmel zamanlama sistemi sayesinde böyle bir tehlike oluşmaz. Sistem tam gereken vakitte harekete geçer ve tohumlar dağılmaya başlar.
Bu hassas zamanlama tohumunu patlatarak yayan bütün bitkiler için geçerlidir. Bitkilerdeki bu sistemin aksaklık çıkmadan işlemesi böyle bir sistemin nasıl ortaya çıktığı sorusunu da beraberinde getirmektedir. Öncelikle, açıkça görüldüğü gibi bitkinin üremesi için sistemin bir bütün olarak var olması zorunludur. Her birinin en başından itibaren aynı anda var olması gereken bu mekanizmaların yüzlerce, binlerce hatta milyonlarca yıl süren değişimlerin sonucunda evrimleşerek geliştiğini iddia etmek ise akıl ve mantık dışıdır. Çünkü kapsül de, içindeki sıvı da, tohumlar da, tohumların olgunlaşması da herşey aynı anda ortaya çıkmalıdır. Herhangi bir aksaklık bitkinin tohumlarını yayamamasına ve bir süre sonra da neslinin tükenmesine neden olur. Üstelik bu sistemin hangi parçasını aradan çıkarırsanız çıkarın, hep aynı sonuçla karşılaşırsınız.
Açıkça görüldüğü gibi tek bir tohumun dağıtım aşamasındaki detaylar bile, bitkilerin tüm parçalarıyla birlikte, eksiksiz ve kusursuz bir biçimde ortaya çıktıklarını göstermektedir. Bu ise kör tesadüflerle, rastgele ve bilinçsiz doğa olaylarıyla gerçekleşmesi mümkün olmayan bir durumdur. Açık olan gerçek şudur ki, bitkiler, herşeyi yaratmış olan Allah tarafından eksiksizce yaratılmışlardır. Üstün güç sahibi olan Allah'tan başka ilah yoktur. Akıl sahibi her insana düşen ise bu gerçeği unutmadan yaşamak ve her işinde Allah'a yönelmektir.

Sizin ilahınız yalnızca Allah'tır ki, O'nun dışında ilah yoktur. O, ilim bakımından herşeyi kuşatmıştır. (Taha Suresi, 98)


Diğer Bitkilerden Örnekler

Çalı bitkisi de kendi kendine açılma yöntemiyle üreyen bitkilerdendir. Ancak bu bitkinin sistemi, Akdeniz salatalığının tam tersi bir şekilde işlemektedir. Çalı bitkisi tohumlarının patlaması, içindeki herhangi bir sıvının yardımıyla değil, bitkide meydana gelen buharlaşma sayesinde olur. Çalı bitkisinin üzerindeki tanelerin güneşe bakan yüzleri, sıcaklık arttıkça gölgede kalan yüzlerinden daha hızlı bir şekilde kurumaya başlar. Bu durum, iki taraf arasında bir basıncın ortaya çıkmasına neden olur. En sonunda taneler ortadan ikiye ayrılır böylece tanelerin içindeki çok sayıdaki küçük siyah tohumlar değişik yönlere dağılmış olur.20
Hura ağacı (Hura Crepitans) ise Brezilya'ya özgü tropikal bir ağaçtır. Tohumları bir düzine odacığın birleşmesinden oluşan bir kapsül şeklindedir. Tohumlar güneş ışınlarının altında büyük bir güçle patlarlar. Hura ağacı, tohumlarını uzağa fırlatma konusunda en başarılı ağaçlardandır. Öyle ki tohumlarını yayma vakti geldiğinde, onları yaklaşık olarak 12 m. uzaklığa kadar fırlatabilir. Bu patlamadan sonra etrafa hem tohumlar hem de ikiye bölünmüş kabuklar saçılır.21


Tohumlarını Rüzgarla Dağıtan Bitkiler

Hava yolu ile taşınan tohumların yeterince hafif olmaları gerekmektedir ve şekilleri de uçmaya uygun şekilde dizayn edilmiş olmalıdır. Örneğin; fındığın ya da hindistan cevizinin büyüklüğünde ve ağırlığında bir tohumun uçmasına imkan yoktur. Bu nedenle rüzgarla taşınan bütün bitkiler çok hafiftirler; ya tüyümsü ya da kanat benzeri yapılara sahiptirler.
Ayrıca uçan tohumların büyük bir çoğunluğu sonbaharın başında yani rüzgarların en şiddetli estiği dönemlerde olgun hale gelirler. Burada rüzgarların ortaya çıkışı ile tohumların olgunlaşma döneminin tam bir uyum içinde olması elbette ki dikkat çekicidir.
Tohumlarını rüzgarla dağıtan bitkiler de diğerleri gibi kendi içlerinde farklı ve özel yapılara sahiptir. Örneğin Kuzey Afrika çöllerinde meyveler ve tohumlar ya kanatlıdır ya da hafif ve tüylüdür. Kuzey Doğu Sudan'daki Nubian Çölü'ndeki ve Kuzey Amerika çöllerindeki bitkiler, meyve ve tohumlarını esintilerle yayarlar. Orta Doğu ve Kuzey Afrika'daki bitkilerse top gibi yuvarlak olur ve kurak zamanda rüzgar tarafından sürüklenirler.24
Karahindiba, kıvırcık sabia ve devedikeni, tohumlarını rüzgarla dağıtan bitkilerden bazılarıdır. Tohumlarını rüzgarla taşıtan bitkilere başka bir örnek olarak da yer kirazını verebiliriz. Yer kirazı tohumlarının kağıt benzeri hava dolu kesecikleri vardır. Bu kesecikler küçük balonlar gibi tohumların rüzgarda hareket etmesini sağlar.
Bu konuyla ilgili olarak verilen örnekler incelenirken akılda tutulması gereken önemli bir nokta vardır. Bir bitkinin üreme şeklini zaman içinde değiştirmesi, örneğin hayvanlar tarafından toprağa gömülerek üreyen bir bitkinin tohumunun, zamanla rüzgarla taşınacak kadar hafif hale gelmesi mümkün değildir. Kayısı çekirdeği gibi ağır bir tohumun aradan ne kadar zaman geçerse geçsin, binlerce, milyonlarca hatta milyarlarca yıl geçse de, rüzgarla taşınacak kadar hafif bir tohum haline gelmesi, kenarlarında kanat benzeri yapıların oluşması imkansızdır. Bu, hiçbir yönden mantıkla ve bilimsel gerçeklerle bağdaşmayan bir iddia olacaktır. Çünkü doğada böyle bir değişimi planlayacak ve uygulayacak bir şuur yoktur. Doğadaki taş, ağaç, toprak, hayvanlar böyle bir planlama yapamazlar. Bitkinin kendisi de doğanın bir parçasıdır ve tohumlarında bilinçli düzenlemeler yapacak bir yeteneğe sahip değildir.
Bu gerçekler düşünüldüğünde tohumların ilk ortaya çıktıkları andan itibaren şu andaki özelliklerine sahip oldukları hemen anlaşılmaktadır. Bu da tohumların bir anda yaratılmış olduklarının binlerce hatta milyonlarca delilinden biridir. Tohumların, taşınmaya uygun yapılarında açık bir tasarım vardır ve bu tasarım sonsuz ilim sahibi olan Allah'a aittir.
Havada uçan tohumların uçuş prensiplerini inceleyen mühendisler Zanonia tohumlarıyla ilgili son derece şaşırtıcı bir sonuç elde etmişlerdir. Zanonia tohumlarındaki ağırlık merkezi son derece eşit ölçülerde dengelenmiştir. Mühendisler eğer ağırlık merkezi geriye kaydırılmış olsaydı tohumların daha yavaş bir şekilde hareket edeceğini tespit etmişlerdir. Ancak Zanonina tohumları sahip oldukları kusursuz şekil ve genel yapı sayesinde uzaklara rahatlıkla gidebilmektedir.25


Tohumların Uçmalarını Kolaylaştıran Özel Tasarımlar

Rüzgarla taşınan bitki tohumlarının hareket kabiliyeti sadece tohumun büyüklüğüne, yere olan mesafesine ya da rüzgara bağlı değildir. En önemli etkenlerden biri, kuşkusuz ki tohumların sahip oldukları özel şekiller ve ek yapılardır. Uçan tohumları genel olarak kanatlı, paraşütümsü, toz tohumlar ve tüylere sahip olan tohumlar olarak gruplandırmak mümkündür.

Pervane Kanatlı Tohumlar

Hava yolunu kullanarak üreyen bitkilerden Avrupa akçaağaçlarının tohumları helikopter pervanesine benzer çok ilginç bir tasarıma sahiptir. Bu tohumların sadece tek taraftan çıkan kanatları vardır. Bu kanatları sayesinde uygun şiddette bir rüzgar olduğunda kendi etraflarında dönerek hareket edebilirler. Olgunlaşan her kanat zar gibi bir görüntüye sahiptir ve üzerinde bulunan damarlarla tıpkı bir böcek kanadına benzer. Kendi etraflarında dönecek şekilde hareket etmelerini sağlayan bir dizayna sahip olmaları akçaağaç tohumlarının düşüş hızını yavaşlatır. Eğer rüzgar yoksa tohumlar yavaş yavaş ve helis şeklinde bir hareketle (kendi etraflarında dönerek) yere düşerler. Akçaağaçlar yaşadıkları bölgeye seyrek olarak dağıldıkları için, döllenme işlemlerinde en büyük yardımcıları rüzgarlardır. Ufak bir rüzgar esintisinde dahi kendi etraflarında dönme hareketi yapacak bir tasarıma sahip olan helikopter tohumlar, bu özellikleri sayesinde kimi zaman kilometrelerce süren uzun mesafeleri bile aşabilirler.26
Terminalia calamansanai adlı bitki ise "V" şeklinde kanatlara sahiptir. Bu özellik sayesinde sakin bir hava akımında tıpkı kağıttan bir uçak gibi rahatlıkla havada kayarak uçabilir.27


Paraşüt Tohumlar

İnsanların yüksekten atlamak için kullandıkları paraşütler özel olarak tasarlanmış bir şekle sahiptir. Rüzgarı içlerine almalarını sağlayan yapıları ile, kendilerini kullanan kişiye havada hareket etme imkanı verirler. Bazı tohumlarda da paraşütlere benzer bir yapı vardır.
Paraşüt tohumlar olgunlaştıklarında hemen ağaçtan yere düşmezler. Onları daha uzağa götürecek kuvvetli rüzgarların çıkmasını beklerler. Eğer böyle olmasaydı ana bitkinin çok yakınına düşeceklerinden büyüme şansları daha az olurdu.
Paraşüt tohumların hızı, tohumun büyüklüğüne ve yapısının gözenekli olup olmamasına bağlıdır. Tohumun sahip olduğu paraşüt benzeri bölüm ne kadar büyükse hızı o kadar yavaştır. Ayrıca ne kadar az gözenekliyse havanın hareketlerine o kadar hassas olur. Tohumların bu gözenekli yapısı da Silybum marianum bitkisinde olduğu gibi basit ipekli olmasına, devedikeninde (Cirsium occidentale) olduğu gibi tüylü olmasına veya kum otundaki (Scabiosa stellata) gibi zarlı yapıda olmasına bağlı olarak değişir.28
Bu birkaç örnekte de görüldüğü gibi, paraşüt tohumlar son derece detaylı tasarlanmış özelliklere sahiptir. Tohumun hızının artması ve daha kolay hareket etmesi için gerekli olan her detay bu tasarımda mevcuttur.
Bu tasarımın tesadüfen meydana gelemeyeceğini açıklamak için şöyle bir örnek verelim. İnsanların kullandıkları paraşütleri düşünün. Kuşkusuz bunların özel bir tasarıma sahip oldukları konusunda hiç kimsenin bir tereddütü ya da itirazı yoktur. Bir paraşütün kendi kendine ortaya çıkamayacağını herkes bilir. Paraşütü ilk olarak düşünüp tasarlayan bir kişi vardır. Paraşütü yapmak için kullanılacak kumaşın ipliğini üreten, bu ipliği dokuyarak kumaş haline getiren bir fabrika, sonra bu kumaşları birleştiren insanlar vardır. Paraşütün havadayken açılmasını sağlayan mekanizma özel olarak tasarlanıp yapılmıştır. Durup dururken bir kumaşın paraşüt şeklinde biraraya gelemeyeceği ve havada uçabilecek bir sistem kazanamayacağı çok açıktır.
Peki o halde paraşüt gibi yapıları olan -hatta bir paraşütten çok daha kompleks mekanizmalara sahip- tohumlar nasıl ortaya çıkmışlardır? Gözenekli yapılarının az ya da çok olması gibi detaylar kim tarafından düşünülmüştür? Bu soruya cevap olarak "bunlar tohumlardaki bilgilerde kodludur" diyenler olabilir. Bu durumda söz konusu kişiler, ilk tohumun nereden çıktığını, nasıl meydana geldiğini, bu bilgilerin tohumun içine nasıl yerleştiğini açıklamalıdırlar. Bu ilk tohum kendi kendine, tesadüflerle böyle bir bilgiye sahip olmuş olamaz. Tohumun yapısını meydana getiren kör ve şuursuz atomlar bir gün karar alıp "Biz tohum denen bir cisim oluşturalım, içine dev ağaçların, birbirinden ilginç bitkilerin, rengarenk çiçeklerin, son derece lezzetli meyvelerin bilgilerini kodlayalım, daha sonra bu tohumu yeryüzüne yayıp tüm dünyada milyonlarca çeşit bitki oluşturalım" demiş olamazlar.
Böyle bir iddiada bulunmak elbette akıl ve mantık sahibi bir insanın yapabileceği birşey değildir. Nasıl ki bir paraşüt kendi kendine ortaya çıkamazsa paraşüt benzeri tohumların da kendiliğinden ortaya çıkamayacakları, bu kadar detaylı tasarımlara tesadüfen sahip olamayacakları açıktır.
Nitekim evrimciler ne kadar çabalasalar da tohumların ortaya çıkışlarına tesadüflerle açıklama getirememektedirler. Evrimci bir yayın olan Grains de Vie adlı eserde, paraşüt yapılı tohumların sahip oldukları tasarım "anlaşılamamış bir konu" olarak ifade edilmektedir:
Evrimin nasıl olup da uçmaya böylesine incelikli olarak adapte olmuş uygulama noktaları ortaya çıkarabilmiş olması hala anlaşılabilmiş bir konu değildir. 29
Yukarıdaki alıntıda görüldüğü gibi evrimciler, kendi hayal dünyalarında ürettikleri "evrim" gibi soyut, hayali bir kavramı adeta müstakil bir güç olarak nitelendirmekte, evrimin birşeyler yapma, düzenleme, tasarlama, meydana getirme gücü varmışçasına ifadeler kullanmaktadırlar. Oysa "evrim" bir güce sahip değildir. Evrimin temel yönlendiricisi olarak kabul edilen tesadüf ise başıboş bir süreçtir; kusursuz sistemler oluşturabilecek bir güce sahip değildir.
Tohumlar, içlerine gerekli bilgileri yerleştiren, nasıl bir ortamda yaşadıklarından ne gibi sistemlere ihtiyaçları olacağından haberdar olan bir güç tarafından bu özellikleriyle birlikte var edilmişlerdir. Bu, elbette ki hiçbir benzeri olmayan bir güçtür ve tüm alemleri yaratmış olan Allah'a aittir. Allah evreni yaratmış, kusursuz bir düzen içinde herşeyi biçimlendirmiştir. Akıl sahibi her insana düşen evrendeki düzeni gözlemleyerek Allah'ın yarattıkları üzerinde düşünmektir. Allah ayetlerinde Kendisi'nden başka ilah olmadığını ve kurtuluşun yalnızca Kendisi'ne ibadet etmekte olduğunu şöyle buyurmaktadır:

Bizim, sizi boş bir amaç uğruna yarattığımızı ve gerçekten bize döndürülüp getirilmeyeceğinizi mi sanmıştınız?" Hak melik olan Allah pek yücedir, Ondan başka ilah yoktur; Kerim olan Arş'ın Rabbidir. Kim Allah ile beraber ona ilişkin geçerli kesin bir kanıt (burhan)ı olmaksızın başka bir ilaha taparsa, artık onun hesabı Rabbinin katındadır. Şüphesiz inkar edenler kurtuluşa eremezler. (Mü'minun Suresi, 115-117)


Toz Görünümlü Tohumlar

Haşhaşların ve aslanağızlarının meyvaları rüzgarla sallandıkları zaman etrafa binlerce incecik tohum serperler. Bu tohumlar öyle küçüktür ki, havada uçan toz taneciklerine benzer. Bu bitkilerde tohumların bulunduğu kapsüllerin üst kısımlarında gözenekler vardır. Gözenekleri tuzluğun üst kısımlarındaki deliklere benzetmek mümkündür. Öyle ki geçtiğimiz yüzyılın başında tuzluğu icad eden R.H. France da bu bitkilerdeki ustalıkla yapılmış sistemden esinlenmiştir.30
Orkidelerinse üç tohum kabı olan kapsülleri vardır. Bu kapsüller olgunlaştıkları zaman etrafa incecik, küçük tohumlarını toz bulutları halinde saçarak patlarlar. Tohumların hiçbir ağırlıkları yoktur. Hiçbir besin depoları yoktur. Hatta embriyo henüz tam olarak oluşmamıştır bile. Yeşerebilmek için orkide tohumlarının çok özel şartlar bulmaları gerekmektedir. Bu, bir dezavantaj değildir. Çünkü orkide tohumlarının sayısı inanılmaz derecede çoktur.31


Tüy Görünümlü Tohumlar

Tıpkı paraşütlü tohumlar gibi tüylü olanlar da doğrudan yere düşmezler. Ana bitkiden ayrılmak için rüzgarın onları sallamasını beklerler. Bu tohumlara örnek olarak filbaharını (Clematite) verebiliriz. Pampa otu (Perbe de la pampa) gibi uzun tüylü olan bitkiler de, bayrak gibi rüzgarda dalgalanırlar. Bu tüyümsü yapıları ile tohumlar rüzgarla birlikte uzaklara taşınabilirler.32


Tohumlarını Suyla Dağıtan Bitkiler

Deniz ya da ırmak kenarında yetişen bitkiler, tohumlarını suyu kullanarak dağıtırlar. Bu tür bitkiler suya dayanıklı olmalarını sağlayan çok özel yapılara sahiptir. Su geçirmeyen ve suda batmayan, uzun bir deniz yolculuğundan sonra bile yeşerme özelliğini kaybetmeyecek kadar dayanıklı olmalarını sağlayan bir tasarımları vardır.
Tohumlarını suyla dağıtan bitkilerin tohumlarındaki su geçirmezlik özelliği kalın ve cilalı dış tabaka ile sağlanmıştır. Suda batmazlık özelliği ise bazen bir hava odası ile bazen havadar süngerimsi bir yapı ile, bazen de küçük tohumlardaki gibi yüzey geriliminin kullanılması ile sağlanır.
Hindistan cevizi, tohumlarını suyla yayan bitkilerden biridir. Tohum, taşımanın güvenli olması için sert bir kabuğun içine yerleştirilmiştir. Bu sert kabuğun içinde uzun bir yolculuk için -su da dahil olmak üzere- ihtiyaç duyulan herşey hazırdır. Dış tarafı ise tohumun sudan zarar görmemesi için oldukça sert bir dokumayla kaplanmıştır. Hindistan cevizi tohumlarının en dikkat çekici özelliklerinden biri ise suda yüzebilmelerini ve batmamalarını sağlayan hava boşluklarına sahip olmalarıdır. Bütün bu özellikleriyle hindistan cevizi tohumları yüzlerce kilometrelik geniş bir alan içinde okyanus akıntılarıyla taşınabilme imkanına sahiptir. Tohum kıyıya ulaştığında filizlenmeye başlar ve bir hindistan cevizi ağacı olarak yetişir.33
Coco nuciferalar, deniz akıntıları ile yayılma konusunda en başarılı bitkilerdendir. Bu büyük oval çekirdek dünyanın bütün tropikal kıyılarında bulunur. Coco nucifera'nın batmamasını sağlayan asıl neden lifli bir meyve olmasıdır. Çünkü hava, bitkinin lifleri arasına hapsolmuştur. Coco nucifera'nın dış kabuğu düz, cilalı ve su geçirmezdir. Bu özellikleri ile bitki, deniz üzerinde aylarca yüzebilir.34
Tropikal enlemlerde seyahat eden tohumlardan başka biri de büyük baklagil tohumlarından olan deniz fasulyeleridir. Çok kalın ve su geçirmez olan dış kılıfları ve çok uzun yaşayabilme özellikleri sayesinde bu tohumlar seyahat eden bitkiler arasında en iyileridir. Tohumlarında ya da tohumları içeren meyvelerin içinde bulunan hava odaları sayesinde denizde batmazlar. Deniz fasulyelerinin tohumları hindistan cevizininkiler kadar büyük değildir ve taşıma işleminde sadece nehirleri kullanır.35
Bundan başka Caesalpinia bonduc adlı bitkinin tohumları da deniz akıntıları sayesinde çok uzaklara kadar gidebilir. Yuvarlak ve gri renkteki bu küçük tohum, kalın kılıfının altında bulunan hava odası sayesinde suda batmaz. Yıllarca denizde kalabilir ve bu süre boyunca yeşerme özelliğini kaybetmeksizin dayanabilir.
Tropikal bir Afrika bitkisi olan Entada gigas tohumları ise kalp şeklinde çok ilginç bir yapıya sahiptir. Tohumlar çok büyük boyutlardaki etli kısmın içerisinde yetişir. Su kenarları boyunca yetişen bu bitki şiddetli yağmurlarla taşınarak Atlantik Okyanusu'na kadar ulaşır. Bu şekilde yıllar süren yolculuklarına çıkan tohumlar, Avrupa'ya, Meksika Körfezi'ne ve Florida'ya kadar giderler. Ve ulaştıkları yerde yeni bir bitki olarak yetişirler.
Tohumlarını suyla yayan başka bir bitki türü de Pancratium maritimum yani deniz zambağıdır. Akdeniz'in ve Atlantik'in kumlu sahillerinde görülen bitkinin yayılması, köşemsi yapıdaki siyah ve olağanüstü hafif tohumları ile olur. Tohumların dış kılıfı yosun gibi bir yapıya sahiptir.36
Nasturtium (tere) benzeri bitkilerin tohumları hidrofob (su geçirmeyen) bir cila ile kaplıdır. Bu cila, onların suyun yüzey gerilimini kullanmalarını ve dolayısıyla batmamalarını sağlamaktadır. Bu sayede bitkilerin tohumları ırmakları yüzerek geçebilmektedir.37
Suyu kullanarak tohumlarını dağıtan bitkiler kendi ağırlıklarını azaltıcı ve yüzey alanlarını artırıcı bir yapıya sahiptir. Havayla dolu, su üzerinde yüzen bu yapı genellikle meyvelerde ve tohumlarda bulunur. Yüzen dokunun birkaç değişik şekli olabilir. Havayla dolu olan hücrelerde içi boşluklu süngerimsi bir yapı olabildiği gibi hücre aralarındaki boşlukları yok edecek şekilde tohumun içine hava hapsolmuş bir yapı da olabilir. Tohumlar işte bu yapılar sayesinde yüzerler. Bundan başka yüzen dokunun hücre duvarları, suyun içeriye girmesini engelleyecek bir yapıya sahip olmalıdır. Ayrıca bitkinin bilgilerinin saklandığı embriyoyu korumak için de bir iç katman vardır.38 Tohumlardaki bu açık tasarım Allah'ın yeryüzünde yarattığı sayısız yaratılış delilinden yalnızca bir tanesidir.
Bu bölümde verilen örneklerde de görüldüğü gibi, su yoluyla üreyen bitkilerdeki en önemli özellik, tohumların tam karaya ulaştıkları zaman açılmalarıdır. Aslında bu son derece ilginç ve istisnai bir durumdur çünkü bilindiği gibi bitki tohumları genellikle suya değdikleri anda çimlenmeye başlarlar. Ama bu durum söz konusu bitkiler için geçerli değildir. Tohumlarını suyla taşıyan bitkiler özel tohum yapıları sayesinde bu konuda ayrıcalıklıdırlar. Eğer bu bitkiler de diğerleri gibi suyu görür görmez hemen çimlenmeye başlasalardı, soyları çoktan tükenmiş olurdu. Oysa yaşadıkları şartlara uygun mekanizmaları sayesinde bu bitkiler varlıklarını rahatlıkla sürdürebilmektedir.
Yeryüzündeki tüm bitkiler kendileri için en uygun yapılara sahiptir. Her türe özgü istisnai özellikler akla, "nasıl olup da her tür bitkinin ihtiyaçlarıyla yaşadıkları ortamın özellikleri birebir uyumludur ve bu özellikler nasıl ortaya çıkmıştır?" sorularını getirecektir.
Tohumlarını suyla dağıtan bitkileri örnek alarak düşünecek olursak, bu bitkilerin tesadüfen ortaya çıkmış olamayacaklarını bir kere daha bütün açıklığı ile görürüz. Bu bitkilerin tohumlarının suda uzun süre kalabilmek için normalden daha dayanıklı bir yapıya ihtiyaçları vardır; bu yüzden kabukları oldukça kalındır ve embriyoyu sudan koruyacak özel bir yapıları vardır. Böyle bir yapının tesadüflerle, bitkinin kendi müstakil çabalarıyla var olamayacağı açıktır. Ayrıca tohumların uzun yolculukları sırasında normalden daha fazla besine ihtiyaçları olacaktır ve tam gerektiği kadar besin, bu tohumların içine yerleştirilmiştir. Elbette ki bu da tesadüfen ortaya çıkamayacak bir özelliktir. Bir bitkinin yolculuk süresini ve besin ihtiyacını hesaplayıp, gereken miktarı tohumunun içine yerleştiremeyeceği apaçık bir gerçektir. Bu bitkilerin tohumları tüm diğer bitkilerin aksine suda bulundukları süre içinde çimlenmez ancak tam karaya geldikleri anda çimlenmeye başlarlar. Böyle bir zamanlamanın da tesadüfen gerçekleşmesi olanaksızdır.
Bu hassas hesap ve ölçülerin tümü, tohumları yaratan, onların her türlü ihtiyaçlarını ve özelliklerini bilen, sonsuz akıl ve bilgi sahibi olan Allah tarafından kusursuzca tasarlanmıştır. Allah herşeyi bir ölçü ile yarattığını ayetlerinde şöyle bildirmektedir:

Yere (gelince,) onu döşeyip-yaydık, onda sarsılmaz-dağlar bıraktık ve onda herşeyden ölçüsü belirlenmiş ürünler bitirdik. (Hicr Suresi, 19)


Tohumlarını Başkalarına Taşıtarak Dağıtan Bitkiler

Otların içinde yürüdüğünüzde giysinize takılan, köpeğinizin tüylerine yapışan tohumlar bu taşınma işlemi için tasarlanmış özel yapılara sahiptir. İğneler, çengeller, olta ve dikenler bu bitkilerin hareket eden cisimlere yapışmasını sağlayan yapılardan birkaçıdır. Bazı türlerde ise bunların yerine dikkat çekici koku, renk ya da lezzete sahip meyveler vardır. Bu meyveler hayvanları cezbedebilmek, tohumları taşımalarını sağlamak için süslenerek dizayn edilmiş gibidirler. Renk, koku, şekil ve sunuş bakımından kusursuzdurlar. Şeker, su, enerji ve mineral tuzlar bakımından zengin olan meyveler hayvanlar için her yönden caziptir. Bu meyveleri yiyen hayvanlar tohumların açığa çıkmasını sağlayarak bitkilerin çoğalmasına büyük yardımda bulunmuş olurlar. Bu sayede söz konusu bitkiler taşıyıcılar vasıtasıyla çok geniş alanlara dağılabilirler.


Karıncalar ve Tohumlar Arasındaki Uyumlu İlişki

Biraz önce de belirttiğimiz gibi, bazı bitkilerin üremeleri hayvanlara bağlıdır çünkü tohumları hayvanlar tarafından taşınır. Bu dağıtım şekli hayvanlar ve bitkiler arasında dikkat çekici bir birlikteliğin ve uyumun var olduğunu gösterir. Örnek olarak çevresi yağlı, yenilebilir bir dokuyla kaplı olan bir tohumu ele alalım. İlk bakışta alelade gelebilecek bu yağlı doku, gerçekte bitkinin neslinin devamlılığı açısından çok önemli bir detaydır. Çünkü bu özellik karıncaların söz konusu bitkiye ilgi duymasına sebep olmaktadır. Bu bitkilerin üremesi pek çok bitkiden farklı olarak karıncalar vasıtasıyla gerçekleşir.
Hemen her bitkide olduğu gibi bu türün tohumunun da filizlenebilmesi için toprağın altına girmesi gerekmektedir. Ayrıca tohumun iç kısmında bulunan ve filizlenmeyi gerçekleştirecek olan bölümün de açığa çıkması gerekmektedir. Bitki bu ihtiyaçlarını kendisi karşılayamaz ama bunları onun için yapan karıncalar vardır. Bu bitkilerin tohumlarındaki yağlı doku, taşıyıcı karıncalar için çok cazip bir yiyecektir. Karıncalar bunları büyük bir istekle toplayıp yuvalarına taşırlar. Böylece ilk aşamada hiç bilmeden tohumu toprağın altına gömmüş olurlar.
Bundan sonra bitki için önemli olan ikinci bölüm başlamaktadır. Karıncalar binbir zahmetle tohumları yuvalarına taşımalarına rağmen sadece kabuğunu yer, etli iç kısmını bırakırlar. Bu sayede hem karınca besin elde etmiş, hem de bitkinin üremesini sağlayacak bölüm toprak altına inmiş olur.40
Peki karınca ve tohum arasındaki bu uyum nasıl ortaya çıkmıştır?
Karıncanın bunu bilinçli olarak yaptığı yani bitkinin üremesi için neyin gerekli olduğunu bildiği ve buna göre hareket ettiği gibi bir düşünce elbette ki mantıken kabul edilemez. Ya da karıncanın bir gün tesadüfen tohumu keşfettiği, bunu toprağın altına götürüp yediği, sonra da buradan bir bitkinin çıktığını görüp bu işlemi devam ettirdiği, çevresindeki karıncalara bunu öğrettiği, kendinden sonraki nesillere de bir şekilde bunu yapmaları gerektiğini haber verdiği gibi bir tez öne sürmek de elbette ki akılcılıktan ve bilimsellikten tamamen uzak olacaktır. Bitkinin de üremek için bu karınca türünün hoşuna gidecek özellikleri bir şekilde öğrendiği ve tohumunu bu özelliklere uygun hale getirdiği, karıncayla aynı ortamda bulunmayı ayarladığı gibi bir iddia da bilimsel açıdan hiçbir geçerliliği olmayan bir safsata olmaktan öteye gidemeyecektir.
Bu uyumun özel olarak ayarlanmış olması şarttır. Çünkü yeryüzündeki bu bitkiye ait ilk tohum, üreyebilmek için başka bir mekanizmaya sahip değildi. Ve eğer karıncaların ilgisini çekemeseydi şu an bir varlığının olması da söz konusu olamayacaktı. (Üstelik karıncalar var olmasa hiçbir şekilde yaşama ihtimalleri olmayacaktı.) Ama bu bitki vardır ve bu durumun bize gösterdiği gerçek de açıkça ortadadır. Bu kusursuz uyumu sağlayan şuur ne karıncaya ne de bitkiye aittir. Bu şuurun kaynağı, her iki canlının sahip oldukları özelliklerden haberdar olan, bu canlıları birbirlerine uyumlu şekilde yaratan üstün bir sahibi olan Allah'tır. Allah her canlının Kendisi'ne boyun eğmiş olduğunu bir ayetinde şöyle bildirmektedir:

Göklerde ve yerde bulunanlar O'nundur; hepsi O'na 'gönülden boyun eğmiş' bulunuyorlar. (Rum Suresi, 26)


Auguti ile Bertholletia'nın Uyumlu İlişkisi

Güney Amerika'da yetişen Bertholletia ağaçlarının kapsül içindeki tohumları, orman zeminine düştükten sonra bir süre bulundukları yerde kalır. Bunun sebebi hayvanların ilgisini çekecek hiçbir özelliklerinin olmamasıdır. Bu tohumların kokuları yoktur, dış görünüş olarak da dikkat çekici değildirler, ayrıca kırılmaları da çok zordur. Ancak bu ağacın üreyebilmesi için de bir şekilde tohum olarak oluşturduğu kapsüllerin içindeki fındıkların çıkarılıp toprağın altına gömülmeleri gereklidir.
Bu olumsuz gibi görünen özelliklerden hiçbiri Bertholletia için sorun teşkil etmez. Çünkü bu olumsuzlukları aşacak özelliklere sahip olan bir canlı vardır ve bu canlı kendisiyle aynı ortamda yaşamaktadır.
Güney Amerika'da yaşayan bir tür kemirici olan Agouti, bu kalın ve kokusuz kabuğun altında kendisi için bir yiyecek olduğunu bilmektedir. Agoutilerin dişleri kesici ve sivridir. Özel diş yapıları sayesinde tohumların sert kapsüllerini kolayca kırarlar. Tek bir kapsül içinde yaklaşık 20 civarında fındık bulunur. Bu da Agoutilerin bir seferde yiyeceğinden çok fazladır. Agouti, çenesine aldığı fındıkları taşır ve onları açtığı küçük deliklere yerleştirdikten sonra üstünü örter. Agoutiler bu işlemi fındıkları daha sonra yemek için yapmış olmalarına rağmen, gömdükleri fındıkların çoğunu daha sonra bulamazlar. Ve bu durum da Bertholletia ağacının işine yarar. Bu sayede ağacın filizlerinden pek çoğu toprağın içine filizlenmek üzere gömülmüş olur.41
Görüldüğü gibi Agouti'nin beslenme şekli ile Bertholletia ağaçlarının üreme şekli, birbirlerine son derece uyumludur. Bu uyum tesadüfen ortaya çıkmış bir uyum değildir. Bu canlılar birbirlerini tesadüfen keşfetmemişlerdir. Bertholletia ağacının böyle şuursuz bir tesadüfün gerçekleşmesini bekleyecek zamanı yoktur; böyle bir lükse sahip değildir. Çünkü bu ağacın, var olduğu ilk günden itibaren üreyebilmesi Agouti'nin varlığına bağlıdır. Bu durumda bu iki canlı birbirlerine uyumlu şekilde yaratılmışlardır.
Bu durumu şöyle bir örnekle netleştirebiliriz: Bir eve girdiğinizi düşünün. Evin içinde bir televizyon olsun ve yanındaki sehpada da bir televizyon kumandası duruyor olsun. Kumandayı elinize aldığınızı ve bununla televizyonu açtığınızı, kanallar arasında dolaştığınızı düşünün. Bu durumda ne düşünürsünüz? Muhtemelen, "bu kumanda bu televizyonu yönetecek şekilde tasarlanıp üretilmiştir" dersiniz. Peki başka bir kişi odaya girse ve şöyle dese: "Bu kumanda da televizyon da zaman içinde tesadüfler sonucunda var olmuş, üstelik yine tesadüfler sonucunda birbirlerine uyumlu hale gelmişlerdir." Bu kişi hakkında ne düşünürsünüz? Muhtemelen bu insanın akıl sağlığı hakkında ciddi şüpheler duyarsınız.
Oysa burada örnek verdiğimiz Bertholletia ağacı ile Agouti isimli canlı arasındaki uyum bir televizyon ve kumandası arasındaki uyumdan çok daha karmaşıktır. Her iki canlının da tüm sistemleri birbirlerine fayda verecek şekilde düzenlenmiştir. Ve elbette bir düzenleme varsa bir Düzenleyici de vardır.
Bu canlılar tek bir yaratıcı yani Allah tarafından yaratılmışlardır. Doğada sayısız örnekleri olan bu uyum hiç kuşkusuz ki çok üstün bir aklın ürünüdür. Sonsuz akıl sahibi olan Allah, her iki canlıyı bu özellikleriyle birlikte yaratmıştır:

Yeryüzünde hiçbir canlı yoktur ki, rızkı Allah'a ait olmasın. Onun karar (yerleşik) yerini de ve geçici bulunduğu yeri de bilir. (Bunların) Tümü apaçık bir kitapta (yazılı)dır. (Hud Suresi, 6)

5. BÖLÜM

BİTKİLERİN VE TOHUMLARIN DAYANIKLILIĞI


Yaratan, hiç yaratmayan gibi midir? Artık öğüt alıp-düşünmez misiniz? Eğer Allah'ın nimetini saymaya kalkışacak olursanız, onu bir genelleme yaparak bile sayamazsınız. Gerçekten Allah, bağışlayandır, esirgeyendir. (Nahl Suresi, 17-18)

Her bitki yaşadığı bölgedeki iklim koşullarına uygun bir tasarıma ve özelliklere sahiptir. Örneğin; kurak bölgelerdeki bitkilerde var olan özellikler diğer türlerde yoktur. Bu nedenle çöllerden alınan bir bitkinin kutuplarda ya da tropikal ormanlarda, tropikal ormanlardan alınan bir bitkininse kutuplarda ya da çöllerde yaşaması beklenemez. Çünkü tropikal bölgelerdeki bitkilerin bütün yapıları -yapraklarının büyüklükleri, tohumlarının dayanıklılık özellikleri vs.- bu bölge şartlarına uygundur. Kutup bölgelerinde yetişen bitkilerin özellikleri ise kutup şartlarına uygundur.
Ancak bazı bitkiler, beklenmedik şekilde ortaya çıkan zorlu şartlara karşı da son derece dayanıklılık gösterirler. Aşırı sıcak hava, kuraklık ya da aksine şiddetli yağmur ve soğuk bitkilerin dayanıklı olmalarını gerektiren şartlardandır. Bu gibi beklenmedik durumlarla karşı karşıya kalan bazı bitkiler ise bir çeşit uyku durumuna geçerek dayanıklılık gösterirler.


Tohumlardaki Uyku Durumu

Bitkilerin fazla bilinmeyen özelliklerinden bir tanesi yukarıda söz ettiğimiz gibi bazı bitki türlerine ait tohumların çok zor koşullara dayanıklı olmalarıdır. Söz konusu tohumlar zor şartların oluştuğu dönemlerde bilinçli bir şekilde metabolizma faaliyetlerini azaltarak yani bir anlamda uykuya geçerek daha dayanıklı olurlar.
Uyku olayı ilk etap olan kurutma aşaması ile başlar. Tohum, sahip olduğu suyu dokularından kaybederek uykuya dalar. Canlı bitki dokuları % 90 ila % 95 arasında su içerirken, uykudaki tohumların dokuları % 5 veya en fazla % 15 gibi su içerir. Bu işlem belirli bir sıralama ile genetik kontrol altında geçekleştirilir. Bu işlemin gerçekleştirilmesinde başlıca etken absisik asit adlı bir hormondur.42 Bu hormon bitki büyümesini engelleyen hormonlardan biridir. Bu hormonun varlığı sayesinde tohum içinde fonksiyonlar yavaşlar. Uyku durumundaki bir tohumun hücrelerinde, solunum çok azalır, ne beslenme ne de büyüme olmaz.43
On yıllarca hatta yüzyıllarca uyku durumunda kalan ve sonra filizlenen tohumlar vardır. Bu uyku durumu bitkilerin soylarını sürdürmeleri açısından son derece önemlidir. Bitkiler hep aynı yerde bulundukları için zor koşullarda yaşamlarını sürdürebilmelerini sağlayan böyle bir mekanizmanın varlığı zorunludur.44
Peki bu derece önemli olan bu özellik nasıl ortaya çıkmıştır? Şartlar kötüye gittiğinde bitki tohumları nasıl olup da bulundukları yerde yani toprağın altında bundan haberdar olmakta ve önlem almaktadırlar? Bir tohumun ne gözleri, ne saati, ne de sinir sistemi mevcuttur. Bu durumda bitki uyanma vaktinin geldiğini nasıl hesaplamaktadır?
Evrimciler bazı bitkilerin zor koşullarda yaşamalarını sağlayan bu özelliklere sahip olmalarına "Bitkiler istenilmeyen dönemlerde yaşamlarını garantiye almak için mekanizmalar geliştirmişlerdir" gibi cümlelerle açıklama getirmeye çalışırlar.
Ancak bu, düşünüldüğünde hiçbir anlam ifade etmeyen bir cümledir. Çünkü tahta bir gövdeden, yeşil yapraklardan, çiçeklerden, köklerden oluşan bir ağacın ya da bir çiçeğin kendisi adına böyle bir ihtiyaç hissetmesi ve düşünmesi, tohumunun uykuya geçmesini sağlayacak bir sistemi keşfetmesi, bu mekanizmayı kendi içinde kurması, sonra da bunun için gerekli olan genetik bilgiyi kodlayarak bunu hücrelerine yerleştirmesi ve bu bilgiyi gelecek nesillere aktarması elbette ki mümkün değildir. Böyle bir iddia bilimsellikten olduğu kadar akılcılıktan da uzaktır.
Evrimcilerin bu konuda anlattıkları bir başka hikaye ise şöyledir: "Evrim süresince, her bir bitki türü çevre koşullarına ait verileri ustalıkla elde etti ve zihnine yerleştirdi. Bu bilgiler konsantre edilerek genetik materyalinin içerisine kodlandı. Tohumlar, mevsimlerin ardarda geldiğini, toprağın cinsini ve kalitesini, bir akarsuyun yakın olup olmadığını, etrafında rakip türlerin var olup olmadığını, ortaya çıkan boş bir alanın varlığını 'tanıma' yeteneğine sahip oldular."45
Yukarıdaki ifadeler biraz düşünüldüğünde bunların da son derece mantıksız varsayımlar olduğu rahatça anlaşılacaktır. Bir bitkinin zihni yoktur ki, çevresindeki verileri "zihnine yerleştirsin"! Veya bir bitki, sahip olduğu genetik materyalden haberdar değildir ki, buna yeni bilgiler eklesin. Aynı şekilde bitki akıl ve şuur sahibi bir varlık değildir ki, çevresini "tanıma yeteneğine" sahip olsun! Bunların tümü bitkilerin Allah tarafından yaratılmış olduğunu kabul etmek istemeyen evrimcilerin gerçek dışı masallarından ibarettir.
Evrimcilerin iddialarının tutarsızlığının başka bir yönü daha vardır. Evrimciler, bitkilerin, özelliklerini zaman içinde gelişen tesadüfi değişimlerle kazandıklarını iddia ederler. Bu iddiaya göre, bitkilerin uzun yıllar süren uyuyabilme özelliğini kazanabilmeleri için de aradan yüzbinlerce, milyonlarca hatta yüzlerce milyon yıl geçmiş olması, bitkilerin olumsuz koşullara dayanarak bu kadar uzun yıllar boyunca beklemiş olmaları gerekmektedir. Ancak bitkiler böyle bir zorluğa dayanamazlar. Tohum çimlenmeye başladıktan sonra şartlar olumsuzsa yaşamını sürdüremez ve bu da o bitkinin soyunun tükenmesi demektir.
Böyle bir durumda kötü şartlarla karşılaşan ilk tohuma, uyuma yeteneğini kazandıracak olağanüstü bir tesadüfün (buna mucize demek daha doğru olur) meydana gelmiş olması gerekir. Bunun hiçbir şekilde mümkün olmayacağı, evrimcilerin tek alternatif olarak öne sürdükleri tesadüflerin değil yüz milyonlarca, trilyon kere trilyon yıl beklense de bir bitkinin genetik şifresine yeni bir bilgi ekleyemeyeceği, tohumlara uyuma özelliğini ya da başka herhangi bir özelliği kazandıramayacakları sağduyu sahibi her insan için açıktır.
Bitkiler ve onları meydana getiren tohumlar, Allah tarafından bugünkü özellikleriyle birlikte kusursuz bir şekilde yaratılmışlardır.

Yaratan, hiç yaratmayan gibi midir? Artık öğüt alıp-düşünmez misiniz? Eğer Allah'ın nimetini saymaya kalkışacak olursanız, onu bir genelleme yaparak bile sayamazsınız. Gerçekten Allah, bağışlayandır, esirgeyendir. (Nahl Suresi, 17-18)



Lupin Bitkisinin Tahmin Yeteneği

Bir insanın gökyüzüne bakarak ya da başka yöntemler kullanarak hava tahmini yapması mümkündür. Peki bir bitkinin tahmin yeteneğine sahip olması mümkün müdür?
Arktik tundralardaki Lupin bitkisi hava tahmini yapar ve bu tahmin doğrultusunda eğer şartlar olumsuzsa çimlenmez ve toprak altında bir nevi uykuya geçerek havaların düzelmesini bekler.
Bu bitkinin tohumları, büyümek için yılın belli zamanlarında sıcak havaya ihtiyaç duyar. Tohumlar sıcaklığın yeterli olmadığını fark ettiklerinde bir mucize gerçekleşir, ortam diğer şartlar açısından uygun olsa da tohumlar çatlamaz ve donmuş topraklarda sıcaklığın artmasını beklerler. Uygun ortam tam olarak sağlandığında da aradan geçen zamanın uzunluğuna bakmaksızın Lupin tohumları kaldıkları yerden gelişmeye devam ederler. Öyle ki kaya yarıkları arasında yüzlerce yıl bozulmadan, çimlenmeden kalan bitki tohumları bulunmuştur.46
Görüldüğü gibi, tohum dış ortamdaki olaylardan haberdarmışçasına bazı değişiklikler yaşamaktadır. Konunun önemi açısından şu soruları tekrar soralım: Dış ortam hakkındaki bilgiler yerin altındaki tohuma nasıl ulaşmaktadır? Tohumun kendi kendine dış ortamdan haberdar olması, yani hava tahmini yapması mümkün müdür? Tohumun içinde bulunan bir mekanizma ona durumu haber vermektedir. Tohum da bu haber üzerine bir yerden emir gelmiş gibi gelişimini aniden durdurmaktadır. Peki öyleyse bu haberleşme sistemi nasıl ortaya çıkmıştır? Bu sistemi bitkinin kendisi mi düşünerek bulmuştur? Bu sistemle ilgili gereken teknik donanımı kendisinde nasıl oluşturmuştur?
Bu sistemi tabii ki bitkinin kendisi bulmamıştır. Böyle bir yeteneği bitkinin kendisinin kazanamayacağı açıktır. Bitki ilk ortaya çıktığı andan itibaren tohumunda saklı duran genetik bilgide, zaten bu yetenek kodludur. Lupin bitkisi, soğuk hava ile karşılaştığında gelişmesini dondurabileceği bir sisteme bu genetik kod sayesinde sahiptir. Böyle bir bilgi kodlamasının ise bir bitki hücresinde kendi kendine oluşması imkansızdır. Evrimcilerin öne sürdükleri hayali gelişim süreci ne kadar uzun olursa olsun, bu sırada ne tür olaylar gerçekleşirse gerçekleşsin, bitki tohumlarını hava durumundan haberdar eden böyle bir sistemin kendi kendine oluşması mümkün değildir.


Diğer Bitkilerden Örnekler

Michigan Üniversitesi tarafından 1879'da başlatılan bir bilimsel çalışmada farklı türlerde tohumlar kavanozların içerisine konmuş ve saklanmıştı. Periyodik olarak kavanozlardaki tohumları filizlendirmek için denemeler yapılmıştı. 1980'lerde yani bu deneye başlandıktan 101 yıl sonra tohumların bazıları filizlenmiştir. Danimarka'da 1978'de yürütülen ayrı bir çalışmada, toprağın içerisinde yapılan kazıda 850 yıllık hareketsiz tohumların filizlendiği görülmüştür.47
Yine aynı şekilde Mimosa glomerata'nın tohumları, kurutulmuş bitki koleksiyonlarının tutulduğu bir kapta 220 yıl saklanmış ve tohumlar suyla ıslatılır ıslatılmaz filizlenmiştir. Dayanıklı tohumlara başka bir örnek olarak da, 1942 yılında, 2. Dünya Savaşı sırasında 147 yıllık Albizia julibrissin adlı bitkiyi verebiliriz. Londra'daki British Museum'da saklanan bu tohum yangın söndürme çalışmaları sırasında ıslanınca aradan geçen zamana rağmen filizlenmiştir.48
Tundra bölgelerinde hava sıcaklıkları düşük olduğu için bozulma daha yavaş olur. Öyle ki bazı tohumlar, 10.000 yaşındaki buzul tabakalarından çıkarılıp, laboratuvara alındığında gerekli miktarda ısı ve nemin sağlanmasıyla birlikte tekrar hayata dönebilmektedirler.49
Tohum, hepimizin bildiği gibi içinde belli miktarda besin bulunan ve dış kabuğu tahtayı andıran bir cisimdir. İçinde sıcaklığı algılayan bir sistemin bulunması, dış dünyadan bilgi alış-verişi yapabilmesi ve sonucunda elde ettiği verileri değerlendirmeye alarak bu bilgiler doğrultusunda hareket etmesi kuşkusuz mucizevi olaylardır.
Ancak evrimcilere göre, tohumlar bu sistemin oluşumunu tesadüflerin yardımı ve kendi iradeleriyle sağlamışlardır. Hatta evrimci iddialara göre, tohumlar son derece şuurlu bir şekilde olumsuz koşulların çimlendikten sonra büyümelerine engel olacağının farkındadırlar. Bu şartları gördükleri anda gelişimlerini durdurmak için neler yapmaları gerektiğini bilir ve sıcaklık yeterli hale geldiğinde kaldıkları yerden gelişmelerine devam ederler.
Elbette bu iddialar tamamen akıl dışıdır. Bunları yapan tohumların kendileri değildir. Bir tahta parçasının zeka ve bilince sahip olması, tahmin yeteneğini kullanması ve böyle planlar yapması mümkün değildir. İşte bu yüzden tohumlardaki bu olağanüstü mekanizmanın, evrim teorisinin iddia ettiği gibi rastlantılarla açıklanması imkansızdır. Tohumlar, zorlu koşullara dayanıklı olacak şekilde özel olarak tasarlanmışlardır; Allah tarafından bu özelliklerle birlikte yaratılmışlardır.
Hiç kuşkusuz ki alemlerin Rabbi olan Allah küçücük tohumlarda bize Kendi varlığının ve üstün yaratışının delillerini sergilemektedir. Allah dilediği anda dilediğini benzersiz olarak yaratandır. O'nun yaratmada hiçbir ortağı yoktur.

İşte Rabbiniz olan Allah budur. O'ndan başka ilah yoktur. Herşeyin yaratıcısıdır, öyleyse O'na kulluk edin. O, herşeyin üstünde bir vekildir. Gözler O'nu idrak edemez; O ise bütün gözleri idrak eder. O, latif olandır, haberdar olandır. (En'am Suresi, 102-103)

6.BÖLÜM

ÖNEMLİ BİR AŞAMA FİLİZLENME


Yeryüzünde birbirine yakın komşu kıtalar vardır; üzüm bağları, ekinler, çatallı ve çatalsız hurmalıklar da vardır ki, bunlar aynı su ile sulanır; ama ürünlerinde (ki verimde ve lezzette) bazısını bazısına üstün kılıyoruz. Şüphesiz, bunlarda aklını kullanan bir topluluk için gerçekten ayetler vardır. (Rad Suresi, 4)

Döllenmenin ardından oluşan tohumun bir bitkiye dönüşmesindeki ilk aşama önceki bölümde incelediğimiz gibi taşınmadır. Taşınmanın ardından da filizlenme safhası başlar. Bir tohum olgunlaştığında genellikle hareketsizdir, hemen filizlenmez. Çünkü tohumun filizlenmesi için pek çok faktörün birarada olması gerekmektedir. Bir tohumun filizlenebilmesi için uygun sıcaklık, nem ve oksijen gereklidir. Bu şartlar biraraya geldiğinde, uyku halindeki tohumlar canlanmaya başlar. Bu şartlardan herhangi birinin eksik olması filizlenmeyi durdurur.
Bir tohumun filizlenmesi için öncelikle suya ihtiyacı vardır. Çünkü olgun tohumlardaki embriyoların suyu bulunmaz, metabolizmanın tekrar aktif hale gelmesi için yani büyüme işleminin başlayabilmesi için hücrelerde sulu bir ortama ihtiyaç vardır. Ayrıca büyüme için gerekli enzimlerin etkinliğinin artması da suya bağlıdır. Bu ihtiyaç tohumların ıslanması ile karşılanır. Tohumların uyanması yani metabolizmalarının harekete geçmesi ile birlikte kök ve filiz de büyür ve bu aşamada hücre bölünmesi başlar. Bir yandan da belirli fonksiyonların özel dokular tarafından gerçekleştirilebilmesi için hücre farklılaşması olur.50
Bu aşamada oksijene mutlaka ihtiyaç vardır. Tohum, içindeki besinlerden oksijenli solunumla enerji ve ısı üretimine başlar. Çünkü çimlenen tohumlarda yeni oluşan bitkinin kısımlarının oluşabilmesi için enerjiye ihtiyaç vardır. Uygun sıcaklık da, enzimlerin maksimum hızlarda çalışmasını sağlar.51
Görüldüğü gibi, tohumun büyümek için enerjiye yani besine ihtiyacı vardır. Fakat tohumun, topraktaki mineralleri kökleriyle alacak hale gelene kadar beslenebileceği bir kaynağı yoktur. Öyleyse tohum, büyümesi için gerekli olan besini nasıl bulmaktadır?
Bu sorunun cevabı tohumun yapısında gizlidir. Daha önceki bölümlerde de detaylı olarak ele alındığı gibi, döllenme sırasında tohumla birlikte oluşan besin deposu, bitki filiz verip toprak dışına çıkana kadar tohumlar tarafından kullanılır. Tohumlar bir bitki olarak kendi besinlerini üretir hale gelinceye kadar, bünyelerindeki bu yedek besinlere ihtiyaç duyarlar.


Uykudan Uyanan Tohumlar

Yukarıda söz ettiğimiz şartlar biraraya geldiğinde tohum içinde kimyasal bazı işlemler gerçekleşir. Biraz önce de belirttiğimiz gibi tohum filizlenmeden önce uyku halindedir. Embriyonun uyku halinde kalmasını sağlayan ise bazı bitki hormonlarıdır. Bunların en önemlisi absisik asittir. Ayrıca tohumların kabuğu gaz alışverişini engelleyecek kadar sık ve sert dokulu olduğundan embriyonun faaliyetini engeller ve uyku halinde kalmasına neden olur. Tohum ıslatıldığında ise, tohum örtüsü şişer ve embriyo hücrelerinde bulunan enzimler faaliyete geçerek "giberellin" isimli yeni bir hormon salgılamaya başlarlar. Bu hormon uyku durumunda kalmayı sağlayan absisik asitin etkisini ortadan kaldırır. Bu asitin etkisinin ortadan kalkması ile de büyüme enzimleri (alfa-amilaz) faaliyete geçer. Bu enzimler besin deposu içindeki nişastanın parçalanarak şekere dönüşmesini sağlar. Ortaya çıkan şekerler embriyo hücreleri tarafından solunumda kullanılır ve böylece hücrelerin bölünmesi için gerekli enerji sağlanmış olur.52
İnsanlar bir tohumu toprağa attıklarında genellikle bu işlemlerden hiç haberdar olmazlar. Birkaç gün sonra o tohumun filizlenmesine ve yavaş yavaş bir bitki haline dönüşmesine ise doğal bir süreç olarak bakarlar. Oysa yukarıda sıraladığımız işlemler, görüldüğü gibi son derece komplekstir. Önce son derece uygun şartlar oluşmakta, ardından birbiri peşisıra kimyasal işlemler gerçekleşmekte, bir enzim diğerine etki ederek tohumun bitki haline dönüşmesini sağlamaktadır. İnsanlar bu kusursuz sistemler üzerinde biraz derinlemesine düşündüğünde, büyük bir yaratılış gerçeği ile karşı karşıya olduğunu anlayacaktır. Çünkü böyle içiçe, biri olmazsa diğeri aktif hale geçmeyen sistemlerin kör tesadüfler sonucu ortaya çıkamayacağı son derece açıktır. Üstelik bu kompleks sistem filizlenme ile de son bulmamakta, daha da mucizevi işlemlerle devam etmektedir.
Gereken koşullar sağlanıp da çimlenme başladığında tohum topraktan suyu çeker ve embriyo hücreleri bölünmeye başlar, daha sonra tohum kabuğu açılır. Filizlenme süresince bitkinin tohumdan çıkan ilk bölümü kökçüklerdir. Bitkilerdeki kök sisteminin ilk aşaması olan bu kökçükler sürekli sürgün verir ve toprakta aşağı doğru büyürler. Kökler büyüdükçe toprağı zorlamaya başlar ve yüksek derecede bir sürtünmeyle karşılaşırlar ancak hiçbir zarar görmezler. Çünkü yeni oluşan bitkinin köklerinin uç kısmındaki hücreler daima aktif haldedirler. Ve en uçtaki hücreler, kökün sert toprak parçaları arasında hareket ederken korunmasını sağlarlar. Bu koruyucu tabakanın (kaliptra) arkasındaki hücreler ise çok hızlı bölünme (mitoz bölünme) özelliğine sahip olup, kökün günde yaklaşık 11 cm. kadar uzamasını sağlarlar. Kökçükler gelişerek dallandıkça, topraktan gerekli besini emebilecekleri yüzeyi artırmanın yanında, bitkinin toprağa daha sağlam tutunmasını da sağlarlar. Buna ilave olarak kökçüklerde oluşan emici tüyler de bitkinin topraktan gerekli maddeleri emerek alma kapasitesini artırmada büyük rol oynamaktadır.53
Kökçüklerin gelişmesini, sap ve yaprakları üretecek olan tomurcukların gelişimi izler. Tohum toprak üstüne, ışığa doğru yönelir ve sürekli güçlenir. Toprağın üstüne çıkan filizin ilk gerçek yaprakları açıldığındaysa bitki, fotosentez yoluyla kendi besinini üretmeye başlar.
Buraya kadar anlatılanlar, aslında herkesin çok iyi bildiği, hatta sık sık gözlemlediği konulardır. Tohumların toprağı yararak içinden çıkmaları herkes için çok alışılmış bir görüntüdür. Ama tohumun büyümesi sırasında gerçekte bir mucize gerçekleşmektedir. Ağırlığı ancak "gram"larla ifade edilebilecek olan tohum, üzerindeki kilolarca ağırlıktaki toprağı delerek yukarı çıkarken hiç zorlanmaz. Tohumun tek amacı toprağın üstüne çıkıp ışığa ulaşmaktır. Çimlenmeye başlayan bitkiler incecik gövdeleriyle sanki boş bir alanda hareket ediyormuş ve üzerlerinde onca ağırlık yokmuşçasına, oldukça rahat bir şekilde, yavaş yavaş gün ışığına doğru yol alırlar.
Toprağın altındaki tohumun yüzeye çıkış yolu çeşitli yöntemlerle kapatılarak, gün ışığına ulaşmasını engellemek için deneyler yapılmıştır. Deneyler sonucunda ortaya çıkan sonuçlar çok şaşırtıcı olmuştur. Tohum, önüne çıkan her engelin etrafından dolaşacak kadar uzun filizler çıkartarak ya da büyüdüğü yerde baskı yaratarak sonuçta yine gün ışığına ulaşmayı başarmıştır. Tohumların filizlenme işlemi hızlandırılmış görüntü şeklinde izlendiğinde filizin kararlılığı ve yönünü şaşırmadan güneşe doğru hareket etmesi çok daha iyi anlaşılmaktadır.
Çimlenmeye başlayan tohumların amaçları güneş ışığına ulaşmak olduğu için filizler her zaman toprağın üstüne çıkacak şekilde hareket ederler. Ancak çimlenen bir tohumda iki yönde büyüme gerçekleşir. Filiz yukarıya doğru yani yerçekimine ters yönde hareket ederek büyümektedir. Kökler ise yerçekimine uygun hareket ederek toprağın içlerine doğru ilerlemektedir.
Bir bitkinin iki ayrı organının birbirine tamamen zıt yönlere doğru büyümeleri elbette ki düşündürücüdür. Nasıl olup da hem kökler hem de filiz hangi yöne gideceklerini bilmektedir?
Bitkilerde büyümeyi yönlendiren uyarılar, ışık ve yerçekimidir. Tohumdan çıkan ilk kök ve filiz bu iki çeşit uyarıya karşı oldukça duyarlı sistemlerle donatılmıştır. Filizlenen bitkinin köklerinde yerçekimi sinyallerini algılayan hücreler bulunur. Yukarıya doğru yükselen gövde kısmında ise ışığa duyarlı olan hücreler bulunur. İşte bu hücrelerin ışığa ve yerçekimine duyarlı olması da bitkinin parçalarını gereken yerlere doğru yönlendirir. Bu iki uyarı türü, köklerin ve filizin büyüme yönü eğer dikey değil de farklı bir yöne doğru ilerliyorlarsa, yönlerini düzeltmelerini de sağlar.54
Filizlenmeye başlayan tohumla ilgili dikkat çeken bir yön daha vardır. Bilindiği gibi, toprağın genel olarak çürütücü, parçalayıcı özelliği vardır. Ancak toprağın içindeki tohum ve milimetrenin yarısı inceliğindeki kökler hiçbir zarar görmezler. Aksine toprağı kullanarak sürekli gelişir ve büyürler.
Buraya kadar verilmiş olan bilgiler tekrar gözden geçirildiğinde çok olağanüstü bir durumla karşı karşıya olunduğu hemen görülecektir. Tohumu oluşturan hücreler birdenbire başkalaşmaya başlamakta ve değişik şekiller alarak bitkinin değişik bölümlerini oluşturmaktadır. Üstelik köklerde ve gövde de görüldüğü gibi farklı yönlerde hareket etmektedirler.
Gelin, kökün yerçekimiyle hareket ederek toprağın derinliklerine gitmesini, gövdenin de toprağın üstüne doğru hareket etmesini biraz daha derinlemesine düşünelim. Dıştan bakıldığında son derece güçsüz bir görünüme sahip olan bu yapıların farklı iki yöne doğru toprağı yararak yaptıkları hareketler akla pek çok soru getirmektedir. Öncelikle bu noktada göz önünde bulundurulması gereken çok önemli bir karar anı vardır. Bu karar anını, yani hücrelerin başkalaşmaya başladığı zamanı belirleyen, onlara gidecekleri yönü gösteren kimdir ya da nedir? Nasıl olup da her hücre hangi bölümde yer alacağını bilerek hareket etmektedir? Nasıl olup da bir karışıklık çıkmamakta örneğin kök hücreleri sadece toprağın içine doğru uzamakta, toprağın üstüne çıkmaya çalışmamaktadır?
Bunlara benzer bütün soruların aslında tek cevabı vardır. Bu kararı alan ve uygulayan, karışıklık çıkmaması için gerekli olan sistemleri belirleyen ve bünyesinde bunları oluşturan elbette ki bitkinin kendisi değildir. Bitkiyi oluşturan hücreler de bunları yapamazlar. Bir hücrenin tahmin ve karar yeteneği, şuuru, ışığı veya yerçekimini ayırt edebilecek bir bilinci, zekası olamaz. Başka bir canlının müdahalesiyle de bu sistemlerin oluşması mümkün değildir. Örneğin, bir insana (bitkiler konusunda dünyanın en bilgili uzmanı da olsa) yerçekimine duyarlı bir bitki hücresi meydana getir deseniz, bunu başarması mümkün değildir.
Bütün bunlar bize bitkilerin üstün ilim sahibi bir güç tarafından yaratıldıklarını ve yönlendirildiklerini gösterir. Yani bu kararı hücrelere aldırtan, onlara görevlerine göre ne yöne gitmeleri gerektiğini gösteren ve sahip oldukları tüm yapıları yaratan üstün bir akıl sahibi vardır. Benzeri olmayan bu sonsuz aklın sahibi tüm alemlerin Rabbi olan Allah'tır. Allah kuru tahta benzeri tohumlardan mucizevi işlemlerle çeşit çeşit bitkiler yaratmakta ve bu bitkiler sayesinde de yeryüzüne hayat vermektedir:

Biz gökten belli bir miktarda su indirdik ve onu yeryüzünde yerleştirdik; şüphesiz biz onu (kurutup) giderme gücüne de sahibiz. Böylelikle, bununla size hurmalıklardan, üzümlüklerden bahçeler-bağlar geliştirdik, içlerinde çok sayıda yemişler vardır; sizler onlardan yemektesiniz. (Müminun Suresi, 18-19)

Filizlerin Kararlılığı

Tohumun yarılıp içinden filizin çıkabilmesi için çok yüksek miktarda kuvvet gerekmektedir. Bu kuvvetin büyüklüğü, filizlerin asfalt kaldırımların kenarlarını çatlatarak çıktıkları düşünüldüğünde çok daha iyi anlaşılmaktadır.
Bu etkili gücün kaynağı her bitkiyi oluşturan hücrelerin içinde bulunan hidrolik basınçtır. Bitkinin büyümesi için mutlaka gerekli olan bu basınç hücre duvarını esnetip, genişletme özelliğine sahiptir. Eğer bu özellik olmasaydı bitkilerdeki hücre büyümesi gerçekleşemezdi, yani tohum filizlenemezdi.55
Büyük bir güç kullanarak topraktan çıkmaya çalışan filiz, daha önce de belirttiğimiz gibi her zaman uygun bir ortama ulaşamayabilir. Güneş ışığını engelleyecek bir cismin altında kalması durumunda bitkinin fotosentez yapması zorlaşacaktır. Bu da bitkinin büyüyememesi demektir. Bu nedenle toprağın altından çıkan her filiz, yeryüzüne ulaştığında hemen ışık kaynağına doğru büyüme yönünü değiştirir. Bu işlem fototropizm olarak adlandırılır. Fototropizm, bitkilerde bulunan ışığa duyarlı yön tayin sisteminin bir göstergesidir.56
Evinizdeki bitkileri daha karanlık ya da güneşi doğrudan almayan bir yere koyduğunuzda bir süre sonra güneşin geldiği yöne doğru döndüklerini görürsünüz. Bunun için kimi zaman yapraklarının boylarını uzattıklarına ve yapraklarının yönlerini değiştirdiklerine hatta kıvrıldıklarına şahit olursunuz. Bir filizin, toprağın altından çıkar çıkmaz ya da karanlık bir yere konulduğunda hemen güneşin geldiği yönü tesbit edebilmesi ve bilinçli bir şekilde o yöne yönelebilmesi üzerinde düşünülmesi gereken bir konudur. Bitkiler sahip oldukları ışığa ve yerçekimine dayalı kusursuz yön tayin yetenekleri sayesinde kolaylıkla bu başarıyı elde etmektedirler. Hayvanlarla ve insanlarla karşılaştırdığımızda bitkiler, ışığı algılama konusunda daha avantajlı durumdadırlar. Çünkü hayvanlar ve insanlar sadece gözleriyle ışığı algılayabilirler. Bitkilerdeki yön tayin sistemleri ise son derece keskindir. Bu yüzden hiçbir zaman yönlerini şaşırmazlar.
Çimlenme küçücük bir cisimden metrelerce uzunluktaki ve tonlarca ağırlıktaki bir bitkinin oluşmasının ilk aşamasıdır. Yavaş yavaş büyüyen bitkinin kökleri yere, dalları yukarıya doğru uzanırken, içindeki sistemler de (besin taşıyacak sistemler, döllenmesini sağlayacak sistemler, bitkinin uzamasını, genişlemesini ve bunların durmasını kontrol eden hormonlar) hep birlikte ortaya çıkar ve hiç birinin oluşumunda bir aksama ya da gecikme olmaz. Bitki için gerekli olan herşey aynı anda gelişir. Bu, son derece önemli bir detaydır. Örneğin; bir yandan çiçeğin döllenme mekanizması gelişirken, diğer yandan da taşıma boruları (besin ve su taşıma boruları) oluşmaktadır. Aksi takdirde, mesela çiçek döllenme mekanizması oluşmayan bir bitkide, su ve besinleri taşımaya yarayan soymuk ya da odun borularının var olmasının hiçbir önemi olmayacaktır. Bu durumda köklerin oluşmasının da bir anlamı yoktur. Çünkü böyle bir bitki neslini devam ettiremeyeceği için ek mekanizmalar bir işe yaramayacaktır.
Ancak bitkilerin gelişiminde bu yönde bir aksaklık görünmez. Herşey tam olması gerektiği şekilde ve olması gerektiği zamanda gerçekleşir.
Buraya kadar anlatılanlardan anlaşılacağı gibi bitkilerdeki birbirine bağlı ve tam uyumlu olan bu mükemmel tasarımda kesinlikle tesadüfen oluşamayacak bir plan vardır. Evrimci bilimadamlarının iddia ettikleri gibi kademeli bir oluşum, diğer canlılar gibi bitkiler için de hiçbir şekilde söz konusu değildir.
Bu kitap boyunca incelediğimiz tohumdaki kusursuz tasarım herşeyi en ince ayrıntısıyla bilen ve meydana getiren bir Yaratıcı'nın varlığının delilidir. Bitkilerin yaşamındaki yalnızca ilk aşama yani tohumun oluşumu bile bize üstün güç sahibi olan Allah'ın yaratmasındaki benzersizliği açıkça göstermeye yeterlidir.

6. BÖLÜM

TOHUM
BİR YARATILIŞ GERÇEĞİDİR


Görmedin mi, Allah, gökten su indirdi, böylece yeryüzü yemyeşil donatıldı. Şüphesiz Allah, lütfedicidir, herşeyden haberdardır. (Hac Suresi, 63)

Buraya kadar bitkilerin önemli bir parçası olan tohumların genel özelliklerinden, tohumlu bitkilerin nasıl ürediklerinden yani tohumların nasıl dağıtıldığından bahsederek, değişik tohum türlerinden örnekler verdik. Tohumlarda saklı olan bilgi sayesinde milyonlarca yıldır aynı şekilde bitkilerin topraktan çıkıyor olmasının taşıdığı öneme dikkat çekerek yeryüzündeki bitki çeşitliliğinin tohumlarda kayıtlı olan bilgiler sayesinde gerçekleştiğini anlattık.
Bu bilgiler ışığında ortaya çıkan sonuç tohumlarda kusursuz bir tasarımın var olduğudur. Peki üstün bir tasarıma sahip olan tohumlar nasıl ortaya çıkmışlardır?
Yeryüzündeki canlı ve cansız varlıkların, evrendeki kusursuz düzenin tesadüfen oluştuğunu iddia eden evrim teorisine göre bitkilerin, dolayısıyla tohumların ortaya çıkışları da tesadüfen gerçekleşmiştir. Ancak evrimci kaynakları incelediğimizde tohumların evrimleşmesi ile ilgili net bir bilgi veremediklerini görürüz. Bu konudaki hangi evrimci kitabı incelesek, karşımıza hep birtakım varsayımlar, bu varsayımlar üzerine kurulmuş hayali senaryolar, kesin bir karara bağlanamayan sonuçsuz teoriler ve bu asılsız iddialar gözönünde bulundurularak yapılmış gerçek dışı çizimlerle karşılaşırız.
Nitekim günümüzde bulunmuş olan tohum fosillerine baktığımızda evrimciler açısından durumun hiç de iç açıcı olmadığına şahit oluruz. Çünkü tohum fosillerinde yaratılışın çok açık delilleri vardır. Günümüzden yaklaşık 350 milyon yıl önce (Devonian Dönemi olarak adlandırılan dönemde) bulunmuş tohum fosillerinde de bugünkü ile aynı koruyucu dış örtü, embriyo ve besin deposu mevcuttur.57 Bu da tohumların özel yapılarının şimdiki özellikleriyle aynı olacak şekilde milyonlarca yıl önce de var olduklarının ve bugüne kadar hiç değişime uğramadıklarının, diğer bir ifadeyle "evrim" gibi hayali bir süreç geçirmediklerinin çok açık bir göstergesidir.
Nitekim evrimci yayınlarda tohumların oluşumu ile ilgili çıkmazların zaman zaman itiraf edildiğine rastlamak mümkündür. Bu itiraflardan biri şöyledir:
Tohumların nasıl geliştiği bilgisi hakkında birçok boşluk vardır. … polen odasının uzanımı hakkında, polen damlasının rolü hakkında, tohum taslağının büyümesinin ertelenmesi hakkında, …hücre zarının yapısı hakkında daha öğrenilmesi gereken birçok şey var.58
Yukarıdaki ifadenin bize gösterdiği sonuç ise açıktır. Dünya üzerindeki canlılığın diğer detaylarında olduğu gibi bitkilerin ve tohumların ortaya çıkışı konusunda da evrim teorisi büyük bir çıkmaz içindedir. Bu da bize, bu canlıların Allah tarafından yaratıldıklarını göstermektedir. Gerek tohumların gerekse bunlardan gelişen bitkilerin ilk ortaya çıktıkları andan itibaren bütün mekanizmaları, kompleks sistemleri ve şaşırtıcı özellikleri eksiksiz olarak vardır. Evrimcilerin kullandıkları "zamanla gelişim, tesadüflere bağlı değişimler, ihtiyaçlar sonucunda ortaya çıkan adaptasyonlar" gibi terimler, hiçbir geçerliliğe sahip olmayan ve bilimsel açıdan da anlam taşımayan iddialardır.

SONUÇ


Ölü toprak kendileri için bir ayettir; biz onu dirilttik, ondan taneler çıkarttık, böylelikle ondan yemektedirler.
Biz, orada hurmalıklardan ve üzüm-bağlarından bahçeler kıldık ve içlerinde pınarlar fışkırttık:
Onun ürünlerinden ve kendi ellerinin yaptıklarından yemeleri için. Yine de şükretmiyorlar mı?
Yerin bitirdiklerinden, kendi nefislerinden ve daha bilmedikleri nice şeylerden bütün çiftleri yaratan (Allah çok) yücedir. (Yasin Suresi, 33-36)


Evrimcilerin canlıların oluşumunda yer verdikleri tesadüf iddiası aklını kullanabilen ve düşünebilen her insanın mantıksızlığını kolaylıkla görebileceği bir iddiadır. Günlük yaşamdan bir örnek vererek bunu görelim:
Bilgisayarda bir çiçek resmi oluşturmak istediğinizde kullandığınız belli programlar vardır. Bu programlar, konusunda eğitim almış, uzman kişiler tarafından üretilmiştir. Ayrıca bilgisayarınız da bu programları kullanarak çiçeğe rengini, üzerindeki desenleri verebileceğiniz şekilde tasarlanmıştır. Ancak çiçeğin ortaya çıkması için en gelişmiş bilgisayarın ve piyasadaki en iyi programların olması yeterli değildir. En başından düşünecek olursak; bu bilgisayarı açacak, programı çalıştırıp, gerekli komutları vererek çiçeği şekillendirecek bir kişinin mutlaka olması gerekmektedir.Dolayısıyla bilgisayar ekranındaki resmi gören kişi hiçbir zaman bunun kendi kendine ortaya çıkmış olabileceğini düşünmez. Resmi yapan birinin olduğundan emindir. Bilgisayarın bir fabrikada üretildiğinden, bütün parçalarını tek tek üreten birilerinin olduğundan da emindir.
Aynı şekilde saksınızda yetiştirdiğiniz çiçeklerin, sokaktaki çimenlerin, bahçelerdeki güllerin ve ağaçların da kendiliklerinden, tesadüfen ortaya çıkmaları mümkün değildir. Üstelik bu bitkilerin, tohumlarına kendileri ile ilgili gerekli tüm bilgileri yerleştirip, bu tohumlardan üremeye başlamaları da imkansızdır. Çünkü tohumlarda yer alan bilgi, mutlak bir aklı ve bilinci gerektirir.
Son derece kusursuz bir tasarıma ve çeşitliliğe sahip olan tohumlara bitkilerle ilgili bilgileri yükleyen, onlara şekil veren, kabuklarını, koruyucu zarlarını yerleştiren, içlerinden her yönden kusursuz bitkilerin çıkmasını sağlayan çok üstün bir güçtür. Bu güç, tüm alemlerin Rabbi olan, herşeyden haberdar olan Allah'a aittir. Allah tüm bitkileri yaratan, onları şekillendiren, kokularını, tadlarını, renklerini verendir. Allah bu gerçeği bize bir ayetinde şöyle bildirmiştir:

Ve birbiri üstüne dizilmiş tomurcuk yüklü yüksek hurma ağaçları da.
Kullara rızık olmak üzere. Ve onunla (o suyla) ölü bir şehri dirilttik. İşte (ölümden sonra) diriliş de böyledir. (Kaf Suresi, 10-11)

EK BÖLÜM

EVRİM YANILGISI


Darwinizm yani evrim teorisi yaratılış gerçeğini reddetmek maksadıyla ortaya atılmış, ancak başarılı olamamış bilim dışı bir safsatadan başka bir şey değildir. Canlılığın, cansız maddelerden tesadüflerle oluştuğunu iddia eden bu teori, evrenin Allah tarafından yaratılmış olduğunun ortaya çıkmasıyla, aslında yıkılmış durumdadır. Evreni yaratan ve en ince ayrıntısına kadar düzenleyen Allah'tır. O halde canlıların Allah tarafından yaratılmadıklarını, tesadüflerin ürünü olduklarını savunan evrim teorisinin de doğru olması mümkün değildir.
Nitekim evrim teorisini incelediğimizde, gerçekten bu teorinin bilimsel bulgular tarafından reddedildiğini görürüz. Canlılıkta var olan tasarım, cansız dünyadaki tasarımdan daha da kompleks ve çarpıcıdır. Örneğin cansız dünyada atomların ne kadar hassas dengelerle düzenlendiklerini inceleyebiliriz, dahası canlı dünyada bu atomların ne denli karmaşık tasarımlarla bir araya getirildiklerini, bunlar kullanılarak yapılan protein, enzim ve hücre gibi yapıların ne denli olağanüstü mekanizmalar olduklarını gözlemleyebiliriz.
İşte canlılıktaki bu olağanüstü tasarım, 20. yüzyılın sonunda Darwinizm'i geçersiz kılmış durumdadır.
Bu konuyu diğer bazı çalışmalarımızda çok ayrıntılı olarak ele aldık ve almaya devam ediyoruz. Ancak önemi açısından burada da özetlemekte yarar vardır.


Darwin'i Yıkan Zorluklar

Evrim teorisi, tarihi eski Yunan'a kadar uzanan bir öğreti olmasına karşın, kapsamlı olarak 19. yüzyılda ortaya atıldı. Teoriyi bilim dünyasının gündemine sokan en önemli gelişme, Charles Darwin'in 1859 yılında yayınlanan Türlerin Kökeni adlı kitabıydı. Darwin bu kitapta dünya üzerindeki farklı canlı türlerinin Allah tarafından ayrı ayrı yaratıldıklarına karşı çıkıyordu. Darwin'e göre, tüm türler ortak bir atadan geliyorlardı ve zaman içinde küçük değişimlerle farklılaşmışlardı.
Darwin'in teorisi, hiçbir somut bilimsel bulguya dayanmıyordu; kendisinin de kabul ettiği gibi sadece bir "mantık yürütme" idi. Hatta, Darwin'in kitabındaki "Teorinin Zorlukları" başlıklı uzun bölümde itiraf ettiği gibi, teori pek çok önemli soru karşısında açık veriyordu.
Darwin, teorisinin önündeki zorlukların gelişen bilim tarafından aşılacağını, yeni bilimsel bulguların teorisini güçlendireceğini umuyordu. Bunu kitabında sık sık belirtmişti. Ancak gelişen bilim, Darwin'in umutlarının tam aksine, teorinin temel iddialarını birer birer dayanaksız bırakmıştır.

Darwinizm'in bilim karşısındaki yenilgisi, üç temel başlıkta incelenebilir:
1) Teori, hayatın yeryüzünde ilk kez nasıl ortaya çıktığını asla açıklayamamaktadır.
2) Teorinin öne sürdüğü "evrim mekanizmaları"nın, gerçekte evrimleştirici bir etkiye sahip olduğunu gösteren hiçbir bilimsel bulgu yoktur.
3) Fosil kayıtları, evrim teorisinin öngörülerinin tam aksine bir tablo ortaya koymaktadır.
Bu bölümde, bu üç temel başlığı ana hatları ile inceleyeceğiz.

Aşılamayan İlk Basamak: Hayatın Kökeni

Evrim teorisi, tüm canlı türlerinin, bundan yaklaşık 3.8 milyar yıl önce ilkel dünyada ortaya çıkan tek bir canlı hücreden geldiklerini iddia etmektedir. Tek bir hücrenin nasıl olup da milyonlarca kompleks canlı türünü oluşturduğu ve eğer gerçekten bu tür bir evrim gerçekleşmişse neden bunun izlerinin fosil kayıtlarında bulunamadığı, teorinin açıklayamadığı sorulardır. Ancak tüm bunlardan önce, iddia edilen evrim sürecinin ilk basamağı üzerinde durmak gerekir. Sözü edilen o "ilk hücre" nasıl ortaya çıkmıştır?
Evrim teorisi, yaratılışı reddettiği, hiçbir doğaüstü müdahaleyi kabul etmediği için, o "ilk hücre"nin, hiçbir tasarım, plan ve düzenleme olmadan, doğa kanunları içinde rastlantısal olarak meydana geldiğini iddia eder. Yani teoriye göre, cansız madde tesadüfler sonucunda ortaya canlı bir hücre çıkarmış olmalıdır. Ancak bu, bilinen en temel biyoloji kanunlarına aykırı bir iddiadır.


"Hayat Hayattan Gelir"

Darwin, kitabında hayatın kökeni konusundan hiç söz etmemişti. Çünkü onun dönemindeki ilkel bilim anlayışı, canlıların çok basit bir yapıya sahip olduklarını varsayıyordu. Ortaçağ'dan beri inanılan "spontane jenerasyon" adlı teoriye göre, cansız maddelerin tesadüfen biraraya gelip, canlı bir varlık oluşturabileceklerine inanılıyordu. Bu dönemde böceklerin yemek artıklarından, farelerin de buğdaydan oluştuğu yaygın bir düşünceydi. Bunu ispatlamak için de ilginç deneyler yapılmıştı. Kirli bir paçavranın üzerine biraz buğday konmuş ve biraz beklendiğinde bu karışımdan farelerin oluşacağı sanılmıştı.
Etlerin kurtlanması da hayatın cansız maddelerden türeyebildiğine bir delil sayılıyordu. Oysa daha sonra anlaşılacaktı ki, etlerin üzerindeki kurtlar kendiliklerinden oluşmuyorlar, sineklerin getirip bıraktıkları gözle görülmeyen larvalardan çıkıyorlardı.
Darwin'in Türlerin Kökeni adlı kitabını yazdığı dönemde ise, bakterilerin cansız maddeden oluşabildikleri inancı, bilim dünyasında yaygın bir kabul görüyordu.
Oysa Darwin'in kitabının yayınlanmasından beş yıl sonra, ünlü Fransız biyolog Louis Pasteur, evrime temel oluşturan bu inancı kesin olarak çürüttü. Pasteur yaptığı uzun çalışma ve deneyler sonucunda vardığı sonucu şöyle özetlemişti: "Cansız maddelerin hayat oluşturabileceği iddiası artık kesin olarak tarihe gömülmüştür." 59
Evrim teorisinin savunucuları, Pasteur'ün bulgularına karşı uzun süre direndiler. Ancak gelişen bilim, canlı hücresinin karmaşık yapısını ortaya çıkardıkça, hayatın kendiliğinden oluşabileceği iddiasının geçersizliği daha da açık hale geldi.


20. Yüzyıldaki Sonuçsuz Çabalar

20. yüzyılda hayatın kökeni konusunu ele alan ilk evrimci, ünlü Rus biyolog Alexander Oparin oldu. Oparin, 1930'lu yıllarda ortaya attığı birtakım tezlerle, canlı hücresinin tesadüfen meydana gelebileceğini ispat etmeye çalıştı. Ancak bu çalışmalar başarısızlıkla sonuçlanacak ve Oparin şu itirafı yapmak zorunda kalacaktı: "Maalesef hücrenin kökeni, evrim teorisinin tümünü içine alan en karanlık noktayı oluşturmaktadır."60
Oparin'in yolunu izleyen evrimciler, hayatın kökeni konusunu çözüme kavuşturacak deneyler yapmaya çalıştılar. Bu deneylerin en ünlüsü, Amerikalı kimyacı Stanley Miller tarafından 1953 yılında düzenlendi. Miller, ilkel dünya atmosferinde olduğunu iddia ettiği gazları bir deney düzeneğinde birleştirerek ve bu karışıma enerji ekleyerek, proteinlerin yapısında kullanılan birkaç organik molekül (aminoasit) sentezledi.
O yıllarda evrim adına önemli bir aşama gibi tanıtılan bu deneyin geçerli olmadığı ve deneyde kullanılan atmosferin gerçek dünya koşullarından çok farklı olduğu, ilerleyen yıllarda ortaya çıkacaktı.61
Uzun süren bir sessizlikten sonra Miller'in kendisi de kullandığı atmosfer ortamının gerçekçi olmadığını itiraf etti.62
Hayatın kökeni sorununu açıklamak için 20. yüzyıl boyunca yürütülen tüm evrimci çabalar hep başarısızlıkla sonuçlandı. San Diego Scripps Enstitüsü'nden ünlü jeokimyacı Jeffrey Bada, evrimci Earth dergisinde 1998 yılında yayınlanan bir makalede bu gerçeği şöyle kabul eder:
Bugün, 20. yüzyılı geride bırakırken, hala, 20. yüzyıla girdiğimizde sahip olduğumuz en büyük çözülmemiş problemle karşı karşıyayız: Hayat yeryüzünde nasıl başladı? 63


Hayatın Kompleks Yapısı

Evrim teorisinin hayatın kökeni konusunda bu denli büyük bir açmaza girmesinin başlıca nedeni, en basit sanılan canlı yapıların bile inanılmaz derecede karmaşık yapılara sahip olmasıdır. Canlı hücresi, insanoğlunun yaptığı bütün teknolojik ürünlerden daha karmaşıktır. Öyle ki bugün dünyanın en gelişmiş laboratuvarlarında bile cansız maddeler bir araya getirilerek canlı bir hücre üretilememektedir.
Bir hücrenin meydana gelmesi için gereken şartlar, asla rastlantılarla açıklanamayacak kadar fazladır. Hücrenin en temel yapı taşı olan proteinlerin rastlantısal olarak sentezlenme ihtimali; 500 aminoasitlik ortalama bir protein için, 10950'de 1'dir. Ancak matematikte 1050'de 1'den küçük olasılıklar pratik olarak "imkansız" sayılırlar.
Hücrenin çekirdeğinde yer alan ve genetik bilgiyi saklayan DNA molekülü ise, inanılmaz bir bilgi bankasıdır. İnsan DNA'sının içerdiği bilginin, eğer kağıda dökülmeye kalkılsa, 500'er sayfadan oluşan 900 ciltlik bir kütüphane oluşturacağı hesaplanmaktadır.
Bu noktada çok ilginç bir ikilem daha vardır: DNA, yalnız birtakım özelleşmiş proteinlerin (enzimlerin) yardımı ile eşlenebilir. Ama bu enzimlerin sentezi de ancak DNA'daki bilgiler doğrultusunda gerçekleşir. Birbirine bağımlı olduklarından, eşlemenin meydana gelebilmesi için ikisinin de aynı anda var olmaları gerekir. Bu ise, hayatın kendiliğinden oluştuğu senaryosunu çıkmaza sokmaktadır. San Diego California Üniversitesi'nden ünlü evrimci Prof. Leslie Orgel, Scientific American dergisinin Ekim 1994 tarihli sayısında bu gerçeği şöyle itiraf eder:
Son derece kompleks yapılara sahip olan proteinlerin ve nükleik asitlerin (RNA ve DNA) aynı yerde ve aynı zamanda rastlantısal olarak oluşmaları aşırı derecede ihtimal dışıdır. Ama bunların birisi olmadan diğerini elde etmek de mümkün değildir. Dolayısıyla insan, yaşamın kimyasal yollarla ortaya çıkmasının asla mümkün olmadığı sonucuna varmak zorunda kalmaktadır. 64
Kuşkusuz eğer hayatın doğal etkenlerle ortaya çıkması imkansız ise, bu durumda hayatın doğaüstü bir biçimde "yaratıldığını" kabul etmek gerekir. Bu gerçek, en temel amacı yaratılışı reddetmek olan evrim teorisini açıkça geçersiz kılmaktadır.


Evrimin Hayali Mekanizmaları

Darwin'in teorisini geçersiz kılan ikinci büyük nokta, teorinin "evrim mekanizmaları" olarak öne sürdüğü iki kavramın da gerçekte hiçbir evrimleştirici güce sahip olmadığının anlaşılmış olmasıdır.
Darwin, ortaya attığı evrim iddiasını tamamen "doğal seleksiyon" mekanizmasına bağlamıştı. Bu mekanizmaya verdiği önem, kitabının isminden de açıkça anlaşılıyordu: Türlerin Kökeni, Doğal Seleksiyon Yoluyla...
Doğal seleksiyon, doğal seçme demektir. Doğadaki yaşam mücadelesi içinde, doğal şartlara uygun ve güçlü canlıların hayatta kalacağı düşüncesine dayanır. Örneğin yırtıcı hayvanlar tarafından tehdit edilen bir geyik sürüsünde, daha hızlı koşabilen geyikler hayatta kalacaktır. Böylece geyik sürüsü, hızlı ve güçlü bireylerden oluşacaktır. Ama elbette bu mekanizma, geyikleri evrimleştirmez, onları başka bir canlı türüne, örneğin atlara dönüştürmez.
Dolayısıyla doğal seleksiyon mekanizması hiçbir evrimleştirici güce sahip değildir. Darwin de bu gerçeğin farkındaydı ve Türlerin Kökeni adlı kitabında "Faydalı değişiklikler oluşmadığı sürece doğal seleksiyon hiçbir şey yapamaz" demek zorunda kalmıştı.65


Lamarck'ın Etkisi

Peki bu "faydalı değişiklikler" nasıl oluşabilirdi? Darwin, kendi döneminin ilkel bilim anlayışı içinde, bu soruyu Lamarck'a dayanarak cevaplamaya çalışmıştı. Darwin'den önce yaşamış olan Fransız biyolog Lamarck'a göre, canlılar yaşamları sırasında geçirdikleri fiziksel değişiklikleri sonraki nesle aktarıyorlar, nesilden nesile biriken bu özellikler sonucunda yeni türler ortaya çıkıyordu. Örneğin Lamarck'a göre zürafalar ceylanlardan türemişlerdi, yüksek ağaçların yapraklarını yemek için çabalarken nesilden nesile boyunları uzamıştı.
Darwin de benzeri örnekler vermiş, örneğin Türlerin Kökeni adlı kitabında, yiyecek bulmak için suya giren bazı ayıların zamanla balinalara dönüştüğünü iddia etmişti.66
Ama Mendel'in keşfettiği ve 20. yüzyılda gelişen genetik bilimiyle kesinleşen kalıtım kanunları, kazanılmış özelliklerin sonraki nesillere aktarılması efsanesini kesin olarak yıktı. Böylece doğal seleksiyon "tek başına" ve dolayısıyla tümüyle etkisiz bir mekanizma olarak kalmış oluyordu.



Neo-Darwinizm ve Mutasyonlar

Darwinistler ise bu duruma bir çözüm bulabilmek için 1930'ların sonlarında, "Modern Sentetik Teori"yi, ya da daha yaygın ismiyle Neo-Darwinizm'i ortaya attılar. Neo-Darwinizm, doğal seleksiyonun yanına "faydalı değişiklik sebebi" olarak mutasyonları, yani canlıların genlerinde radyasyon gibi dış etkiler ya da kopyalama hataları sonucunda oluşan bozulmaları ekledi.
Bugün de hala dünyada evrim adına geçerliliğini koruyan model Neo-Darwinizm'dir. Teori, yeryüzünde bulunan milyonlarca canlı türünün, bu canlıların, kulak, göz, akciğer, kanat gibi sayısız kompleks organlarının "mutasyonlara", yani genetik bozukluklara dayalı bir süreç sonucunda oluştuğunu iddia etmektedir. Ama teoriyi çaresiz bırakan açık bir bilimsel gerçek vardır: Mutasyonlar canlıları geliştirmezler, aksine her zaman için canlılara zarar verirler.
Bunun nedeni çok basittir: DNA çok kompleks bir düzene sahiptir. Bu molekül üzerinde oluşan herhangi rastgele bir etki ancak zarar verir. Amerikalı genetikçi B. G. Ranganathan bunu şöyle açıklar:
Mutasyonlar küçük, rastgele ve zararlıdırlar. Çok ender olarak meydana gelirler ve en iyi ihtimalle etkisizdirler. Bu üç özellik, mutasyonların evrimsel bir gelişme meydana getiremeyeceğini gösterir. Zaten yüksek derecede özelleşmiş bir organizmada meydana gelebilecek rastlantısal bir değişim, ya etkisiz olacaktır ya da zararlı. Bir kol saatinde meydana gelecek rastgele bir değişim kol saatini geliştirmeyecektir. Ona büyük ihtimalle zarar verecek veya en iyi ihtimalle etkisiz olacaktır. Bir deprem bir şehri geliştirmez, ona yıkım getirir.67
Nitekim bugüne kadar hiçbir yararlı, yani genetik bilgiyi geliştiren mutasyon örneği gözlemlenmedi. Tüm mutasyonların zararlı olduğu görüldü. Anlaşıldı ki, evrim teorisinin "evrim mekanizması" olarak gösterdiği mutasyonlar, gerçekte canlıları sadece tahrip eden, sakat bırakan bir genetik olaydır. (İnsanlarda mutasyonun en sık görülen etkisi de kanserdir.) Elbette tahrip edici bir mekanizma "evrim mekanizması" olamaz. Doğal seleksiyon ise, Darwin'in de kabul ettiği gibi, "tek başına hiçbir şey yapamaz." Bu gerçek bizlere doğada hiçbir "evrim mekanizması" olmadığını göstermektedir. Evrim mekanizması olmadığına göre de, evrim denen hayali süreç yaşanmış olamaz.


Fosil Kayıtları: Ara Formlardan Eser Yok

Evrim teorisinin iddia ettiği senaryonun yaşanmış olmadığının en açık göstergesi ise fosil kayıtlarıdır.
Evrim teorisine göre bütün canlılar birbirlerinden türemişlerdir. Önceden var olan bir canlı türü, zamanla bir diğerine dönüşmüş ve bütün türler bu şekilde ortaya çıkmışlardır. Teoriye göre bu dönüşüm yüz milyonlarca senelik uzun bir zaman dilimini kapsamış ve kademe kademe ilerlemiştir.
Bu durumda, iddia edilen uzun dönüşüm süreci içinde sayısız "ara türler"in oluşmuş ve yaşamış olmaları gerekir.
Örneğin geçmişte, balık özelliklerini hala taşımalarına rağmen, bir yandan da bazı sürüngen özellikleri kazanmış olan yarı balık-yarı sürüngen canlılar yaşamış olmalıdır. Ya da sürüngen özelliklerini taşırken, bir yandan da bazı kuş özellikleri kazanmış sürüngen-kuşlar ortaya çıkmış olmalıdır. Bunlar, bir geçiş sürecinde oldukları için de, sakat, eksik, kusurlu canlılar olmalıdır. Evrimciler geçmişte yaşamış olduklarına inandıkları bu teorik yaratıklara "ara-geçiş formu" adını verirler.
Eğer gerçekten bu tür canlılar geçmişte yaşamışlarsa bunların sayılarının ve çeşitlerinin milyonlarca hatta milyarlarca olması gerekir. Ve bu ucube canlıların kalıntılarına mutlaka fosil kayıtlarında rastlanması gerekir. Darwin, Türlerin Kökeni'nde bunu şöyle açıklamıştır:
Eğer teorim doğruysa, türleri birbirine bağlayan sayısız ara-geçiş çeşitleri mutlaka yaşamış olmalıdır... Bunların yaşamış olduklarının kanıtları da sadece fosil kalıntıları arasında bulunabilir.68


Darwin'in Yıkılan Umutları

Ancak 19. yüzyılın ortasından bu yana dünyanın dört bir yanında hummalı fosil araştırmaları yapıldığı halde bu ara geçiş formlarına rastlanamamıştır. Yapılan kazılarda ve araştırmalarda elde edilen bütün bulgular, evrimcilerin beklediklerinin aksine, canlıların yeryüzünde birdenbire, eksiksiz ve kusursuz bir biçimde ortaya çıktıklarını göstermiştir.
Ünlü İngiliz paleontolog (fosil bilimci) Derek W. Ager, bir evrimci olmasına karşın bu gerçeği şöyle itiraf eder:
Sorunumuz şudur: Fosil kayıtlarını detaylı olarak incelediğimizde, türler ya da sınıflar seviyesinde olsun, sürekli olarak aynı gerçekle karşılaşırız; kademeli evrimle gelişen değil, aniden yeryüzünde oluşan gruplar görürüz.69
Yani fosil kayıtlarında, tüm canlı türleri, aralarında hiçbir geçiş formu olmadan eksiksiz biçimleriyle aniden ortaya çıkmaktadırlar. Bu, Darwin'in öngörülerinin tam aksidir. Dahası, bu canlı türlerinin yaratıldıklarını gösteren çok güçlü bir delildir. Çünkü bir canlı türünün, kendisinden evrimleştiği hiçbir atası olmadan, bir anda ve kusursuz olarak ortaya çıkmasının tek açıklaması, o türün yaratılmış olmasıdır. Bu gerçek, ünlü evrimci biyolog Douglas Futuyma tarafından da kabul edilir:
Yaratılış ve evrim, yaşayan canlıların kökeni hakkında yapılabilecek yegane iki açıklamadır. Canlılar dünya üzerinde ya tamamen mükemmel ve eksiksiz bir biçimde ortaya çıkmışlardır ya da böyle olmamıştır. Eğer böyle olmadıysa, bir değişim süreci sayesinde kendilerinden önce var olan bazı canlı türlerinden evrimleşerek meydana gelmiş olmalıdırlar. Ama eğer eksiksiz ve mükemmel bir biçimde ortaya çıkmışlarsa, o halde sonsuz güç sahibi bir akıl tarafından yaratılmış olmaları gerekir.70
Fosiller ise, canlıların yeryüzünde eksiksiz ve mükemmel bir biçimde ortaya çıktıklarını göstermektedir. Yani "türlerin kökeni", Darwin'in sandığının aksine, evrim değil yaratılıştır.


İnsanın Evrimi Masalı

Evrim teorisini savunanların en çok gündeme getirdikleri konu, insanın kökeni konusudur. Bu konudaki Darwinist iddia, bugün yaşayan modern insanın maymunsu birtakım yaratıklardan geldiğini varsayar. 4-5 milyon yıl önce başladığı varsayılan bu süreçte, modern insan ile ataları arasında bazı "ara form"ların yaşadığı iddia edilir. Gerçekte tümüyle hayali olan bu senaryoda dört temel "kategori" sayılır:
1— Australopithecus
2— Homo habilis
3— Homo erectus
4— Homo sapiens
Evrimciler, insanların sözde ilk maymunsu atalarına "güney maymunu" anlamına gelen "Australopithecus" ismini verirler. Bu canlılar gerçekte soyu tükenmiş bir maymun türünden başka bir şey değildir. Lord Solly Zuckerman ve Prof. Charles Oxnard gibi İngiltere ve ABD'den dünyaca ünlü iki anatomistin Australopithecus örnekleri üzerinde yaptıkları çok geniş kapsamlı çalışmalar, bu canlıların sadece soyu tükenmiş bir maymun türüne ait olduklarını ve insanlarla hiçbir benzerlik taşımadıklarını göstermiştir.71
İnsan evriminin bir sonraki safhasını da evrimciler, "homo" yani insan olarak sınıflandırırlar. İddiaya göre homo serisindeki canlılar, Australopithecuslar'dan daha gelişmişlerdir. Evrimciler, bu farklı canlılara ait fosilleri ardı ardına dizerek hayali bir evrim şeması oluştururlar. Bu şema hayalidir, çünkü gerçekte bu farklı sınıfların arasında evrimsel bir ilişki olduğu asla ispatlanamamıştır. Evrim teorisinin 20. yüzyıldaki en önemli savunucularından biri olan Ernst Mayr, "Homo sapiens'e uzanan zincir gerçekte kayıptır" diyerek bunu kabul eder.72
Evrimciler "Australopithecus > Homo habilis > Homo erectus > Homo sapiens" sıralamasını yazarken, bu türlerin her birinin, bir sonrakinin atası olduğu izlenimini verirler. Oysa paleoantropologların son bulguları, Australopithecus, Homo habilis ve Homo erectus'un dünya'nın farklı bölgelerinde aynı dönemlerde yaşadıklarını göstermektedir.73
Dahası Homo erectus sınıflamasına ait insanların bir bölümü çok modern zamanlara kadar yaşamışlar, Homo sapiens neandertalensis ve Homo sapiens sapiens (modern insan) ile aynı ortamda yan yana bulunmuşlardır.74
Bu ise elbette bu sınıfların birbirlerinin ataları oldukları iddiasının geçersizliğini açıkça ortaya koymaktadır. Harvard Üniversitesi paleontologlarından Stephen Jay Gould, kendisi de bir evrimci olmasına karşın, Darwinist teorinin içine girdiği bu çıkmazı şöyle açıklar:
Eğer birbiri ile paralel bir biçimde yaşayan üç farklı hominid (insanımsı) çizgisi varsa, o halde bizim soy ağacımıza ne oldu? Açıktır ki bunların biri diğerinden gelmiş olamaz. Dahası, biri diğeriyle karşılaştırıldığında evrimsel bir gelişme trendi göstermemektedirler.75
Kısacası, medyada ya da ders kitaplarında yer alan hayali birtakım "yarı maymun, yarı insan" canlıların çizimleriyle, yani sırf propaganda yoluyla ayakta tutulmaya çalışılan insanın evrimi senaryosu, hiçbir bilimsel temeli olmayan bir masaldan ibarettir.
Bu konuyu uzun yıllar inceleyen, özellikle Australopithecus fosilleri üzerinde 15 yıl araştırma yapan İngiltere'nin en ünlü ve saygın bilim adamlarından Lord Solly Zuckerman, bir evrimci olmasına rağmen, ortada maymunsu canlılardan insana uzanan gerçek bir soy ağacı olmadığı sonucuna varmıştır.
Zuckerman bir de ilginç bir "bilim skalası" yapmıştır. Bilimsel olarak kabul ettiği bilgi dallarından, bilim dışı olarak kabul ettiği bilgi dallarına kadar bir yelpaze oluşturmuştur. Zuckerman'ın bu tablosuna göre en "bilimsel" -yani somut verilere dayanan- bilgi dalları kimya ve fiziktir. Yelpazede bunlardan sonra biyoloji bilimleri, sonra da sosyal bilimler gelir. Yelpazenin en ucunda, yani en "bilim dışı" sayılan kısımda ise, Zuckerman'a göre, telepati, altıncı his gibi "duyum ötesi algılama" kavramları ve bir de "insanın evrimi" vardır! Zuckerman, yelpazenin bu ucunu şöyle açıklar:
Objektif gerçekliğin alanından çıkıp da, biyolojik bilim olarak varsayılan bu alanlara—yani duyum ötesi algılamaya ve insanın fosil tarihinin yorumlanmasına—girdiğimizde, evrim teorisine inanan bir kimse için herşeyin mümkün olduğunu görürüz. Öyle ki teorilerine kesinlikle inanan bu kimselerin çelişkili bazı yargıları aynı anda kabul etmeleri bile mümkündür.76
İşte insanın evrimi masalı da, teorilerine körü körüne inanan birtakım insanların buldukları bazı fosilleri ön yargılı bir biçimde yorumlamalarından ibarettir.


Materyalist Bir İnanç

Buraya kadar incelediklerimiz, evrim teorisinin bilimsel bulgularla açıkça çelişen bir iddia olduğunu göstermektedir. Teorinin hayatın kökeni hakkındaki iddiası bilime aykırıdır, öne sürdüğü evrim mekanizmalarının hiçbir evrimleştirici etkisi yoktur ve fosiller teorinin gerektirdiği ara formların yaşamadıklarını göstermektedir. Bu durumda, elbette, evrim teorisinin bilime aykırı bir düşünce olarak bir kenara atılması gerekir. Nitekim tarih boyunca dünya merkezli evren modeli gibi pek çok düşünce, bilimin gündeminden çıkarılmıştır.
Ama evrim teorisi ısrarla bilimin gündeminde tutulmaktadır. Hatta bazı insanlar teorinin eleştirilmesini "bilime saldırı" olarak göstermeye bile çalışmaktadırlar. Peki neden?...
Bu durumun nedeni, evrim teorisinin bazı çevreler için, kendisinden asla vazgeçilemeyecek dogmatik bir inanış oluşudur. Bu çevreler, materyalist felsefeye körü körüne bağlıdırlar ve Darwinizm'i de doğaya getirilebilecek yegane materyalist açıklama olduğu için benimsemektedirler.
Bazen bunu açıkça itiraf da ederler. Harvard Üniversitesi'nden ünlü bir genetikçi ve aynı zamanda önde gelen bir evrimci olan Richard Lewontin, "önce materyalist, sonra bilim adamı" olduğunu şöyle itiraf etmektedir:
Bizim materyalizme bir inancımız var, 'a priori' (önceden kabul edilmiş, doğru varsayılmış) bir inanç bu. Bizi dünyaya materyalist bir açıklama getirmeye zorlayan şey, bilimin yöntemleri ve kuralları değil. Aksine, materyalizme olan 'a priori' bağlılığımız nedeniyle, dünyaya materyalist bir açıklama getiren araştırma yöntemlerini ve kavramları kurguluyoruz. Materyalizm mutlak doğru olduğuna göre de, İlahi bir açıklamanın sahneye girmesine izin veremeyiz.77
Bu sözler, Darwinizm'in, materyalist felsefeye bağlılık uğruna yaşatılan bir dogma olduğunun açık ifadeleridir. Bu dogma, maddeden başka hiçbir varlık olmadığını varsayar. Bu nedenle de cansız, bilinçsiz maddenin, hayatı yarattığına inanır. Milyonlarca farklı canlı türünün; örneğin kuşların, balıkların, zürafaların, kaplanların, böceklerin, ağaçların, çiçeklerin, balinaların ve insanların maddenin kendi içindeki etkileşimlerle, yani yağan yağmurla, çakan şimşekle, cansız maddenin içinden oluştuğunu kabul eder. Gerçekte ise bu, hem akla hem bilime aykırı bir kabuldür. Ama Darwinistler, "İlahi bir açıklamanın sahneye girmemesi" için, bu kabulü savunmaya devam etmektedirler.
Canlıların kökenine materyalist bir ön yargı ile bakmayan herkes ise, şu açık gerçeği görecektir: Tüm canlılar, üstün bir güç, bilgi ve akla sahip olan bir Yaratıcı'nın eseridirler. Yaratıcı, tüm evreni yoktan var eden, en kusursuz biçimde düzenleyen ve tüm canlıları da yaratıp şekillendiren Allah'tır.

Dediler ki: "Sen yücesin, bize öğrettiğinden başka bizim hiçbir bilgimiz yok. Gerçekten sen, herşeyi bilen, hüküm ve hikmet sahibi olansın." (Bakara Suresi, 32)
NOTLAR


1- Harry J. Fuller, The Plant World, s.85-86
2- www.britannica.com/bcom/eb/article/1/0,5716,120821+4+111095,00.html
3- Malcolm Wilkins, Plantwatching, NewYork, Fact on File Publications, 1988, s.48
4- Plantwatching, s.48
5- Wilfred W. Robbins, T. Elliot Weier, C. Ralph Stocking, Botany, An Introduction to Plant Science, s.268)
6-http://www.healthy.net/asp/templates/book.asp?PageType=Book&ID=343
7-http://www.healthy.net/asp/templates/book.asp?PageType=Book&ID=343
8-http://www.healthy.net/asp/templates/book.asp?PageType=Book&ID=343
9- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.31
10- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.32-33)
11- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.24
12- Plantwatching, s.44
13- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.17
14- Mark Ridley, Evolution, Oxford University Press, 1997, s.293
15- Mark Ridley, Evolution, Oxford University Press, 1997, s.293
16- Harry J. Fuller, The Plant World, s.48-51
17- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.86
18- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.60
19- David Attenborough, The Private Life of Plants, Princeton Univ. Press, Princeton, New Jersey, s.15
20- David Attenborough, The Private Life of Plants, Princeton Univ. Press, Princeton, New Jersey, s.16
21- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.62
22- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.61
23- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.61-62
24- www.britannica.com/bcom/eb/article/9/0,5716,68289+1+66568,00.html
25- Alfred Stefferud, The Wonders of Seeds, s.68-69
26- David Attenborough, The Private Life of Plants, Princeton Univ. Press, Princeton, New Jersey, s.19
27- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.54-55
28- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.56
29- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.56
30- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.57
31- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.57
32- Françoise Brenckmann Grains de Vie, Le Monde Merveilleux Des Graines, s.57
33- Solomon, Berg, Martin, Villie, Biology, Saunders College Publishing, s. 751
34- Grains de Vie, s.36-37
35- David Attenborough, The Private Life of Plants, Princeton University Press, Princeton, New Jersey, s.24
36- Grains de Vie, s.38-39
37- Grains de Vie, s.41
38-T.T. Kozlowski, Seed Biology, Academic Press, New York and London, 1972, s.194
39- Grains de Vie, s.53
40- David Attenborough, The Private Life of Plants, Princeton University Press, Princeton, New Jersey, s.24
41- David Attenborough, The Private Life of Plants, Princeton University Press, Princeton, New Jersey, s. 35
42- Grains de Vie, s.68
43- Musa Özet, Osman Arpacı, Biyoloji 2, Sürat Yayınları, s.138-141
44- Advanced Plant Physiology, Malcolm B. Wilkins, Longman Scientific & Technical, England, 1987, s.462
45- Grains de Vie, s.68
46- Raven, Evert, Curtis, Biology of Plants, World Publishers, New York, 1976, s.346
47- Solomon, Berg, Martin, Villie, Biology, Saunders College Publishing, s.680
48- Malcolm Wilkins, Plantwatching, New York, Facts on File Publications, 1988, s. 46-47
49- John King, Reaching for The Sun, 1997, Cambridge University Press, Cambridge, s.117
50- Plantwatching, s.47
51- Musa Özet, Osman Arpacı, Ali Uslu, Biyoloji 3, Sürat Yayınları, s.46
52-Solomon, Berg, Martin, Villie, Biology, Saunders College Publishing, s.766-768
53- Musa Özet, Osman Arpacı, Ali Uslu, Biyoloji 3, Sürat Yayınları, s. 48
54- Malcolm Wilkins, Plantwatching, New York, Facts on File Publications, 1988, 65-66
55- Plant watching, s.56
56- Helena Curtis, N. Sue Barnes, Invitation to Biology, Worth Publishers, Inc. s.356-357
57- Raven, Evert, Curtis, Biology of Plants, World Publishers, New York, 1976, s.326
58- Seed Biology, s.66
59- Sidney Fox, Klaus Dose, Molecular Evolution and The Origin of Life, New York: Marcel Dekker, 1977. s. 2
60- Alexander I. Oparin, Origin of Life, (1936) New York, Dover Publications, 1953 (Reprint), s.196
61- "New Evidence on Evolution of Early Atmosphere and Life", Bulletin of the American Meteorological Society, cilt 63, Kasım 1982, s. 1328-1330.
62- Stanley Miller, Molecular Evolution of Life: Current Status of the Prebiotic Synthesis of Small Molecules, 1986, s. 7
63- Jeffrey Bada, Earth, Şubat 1998, s. 40
64- Leslie E. Orgel, "The Origin of Life on Earth", Scientific American, cilt 271, Ekim 1994, s. 78
65- Charles Darwin, The Origin of Species: A Facsimile of the First Edition, Harvard University Press, 1964, s. 189
66- Charles Darwin, The Origin of Species: A Facsimile of the First Edition, Harvard University Press, 1964, s. 184.
67- B. G. Ranganathan, Origins?, Pennsylvania: The Banner Of Truth Trust, 1988.
68- Charles Darwin, The Origin of Species: A Facsimile of the First Edition, Harvard University Press, 1964, s. 179
69- Derek A. Ager, "The Nature of the Fossil Record", Proceedings of the British Geological Association, cilt 87, 1976, s. 133
70- Douglas J. Futuyma, Science on Trial, New York: Pantheon Books, 1983. s. 197
71- Solly Zuckerman, Beyond The Ivory Tower, New York: Toplinger Publications, 1970, ss. 75-94; Charles E. Oxnard, "The Place of Australopithecines in Human Evolution: Grounds for Doubt", Nature, cilt 258, s. 389
72- J. Rennie, "Darwin's Current Bulldog: Ernst Mayr", Scientific American, Aralık 1992
73- Alan Walker, Science, vol. 207, 1980, s. 1103; A. J. Kelso, Physical Antropology, 1st ed., New York: J. B. Lipincott Co., 1970, s. 221; M. D. Leakey, Olduvai Gorge, vol. 3, Cambridge: Cambridge University Press, 1971, s. 272
74- Time, Kasım 1996
75- S. J. Gould, Natural History, vol. 85, 1976, s. 30
76- Solly Zuckerman, Beyond The Ivory Tower, New York: Toplinger Publications, 1970, s. 19
77- Richard Lewontin, "The Demon-Haunted World", The New York Review of Books, 9 Ocak, 1997, s. 28




ARKA KAPAK YAZISI


Her insan tohumu tanır, neye benzediğini bilir, bitkilerin tohumlardan oluştuğundan haberdardır. Ancak nasıl olup da tahta parçasını andıran bir cisimden birbirine benzeyen ya da benzemeyen çeşit çeşit bitkinin çıktığını, bütün bu bitkilere ait bilgilerin tohumlara nasıl yerleştirildiğini, bu bilgilerin nasıl ayrı ayrı şifrelendirildiğini belki de hiç düşünmemiştir.
Nasıl olup da tahta görünümlü bir cisimden tam ayarında şekeriyle, özel kokusuyla, lezzetiyle meyve-ler çıkmaktadır? Ağacı üreten, meyveleri ağaca yerleştiren tohumun kendisi midir? Meyvelerin veya çiçeklerin şeklini, rengini belirleyen tohum mudur? Peki ya ağaç ile ilgili bilgileri eksiksiz olarak içindeki embriyoya yerleştiren tohumun
kendisi midir?
Bu kitapta tüm bu soruların cevabı verilmekte; tohumların Allah’ın sonsuz kudretinin birer delili olduğu ve yaratılışlarındaki ihtişam anlatılmaktadır.